Skip to main content

Rule Reduction for EBRB Classification Based on Clustering

  • Conference paper
  • First Online:
Web Information Systems and Applications (WISA 2021)

Abstract

The extended belief rule base (EBRB) system has been successfully applied to classification problems in various fields. However, the existing EBRB generation method converts all data into extended belief rules, which leads to the large scale of rule base and affects the efficiency and accuracy of subsequent inference. In view of this, this paper proposes an EBRB rule reduction method based on the adaptive K-means clustering algorithm (RC-EBRB). In the rule generation process, the K-means clustering algorithm is applied to obtain the rule cluster centers, which are used to generate new rules. In the end, these new rules form a reduced EBRB. Moreover, in order to determine the initial cluster centers and the number of clusters in the K-means clustering algorithm, the algorithm idea of K-means++ is introduced and a reduction granularity adjustment algorithm with threshold is proposed, respectively. Finally, four datasets on commonly used classification datasets from UCI are used to verify the performance of the proposed method. The experimental results are compared with the existing EBRB methods and the traditional machine learning methods, which prove the effectiveness of the method.

Supported by the Natural Science Foundation of Fujian Province, China (2019J01647) and the National Natural Science Foundation of China (61773123).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jiao, L., Pan, Q., Denoeux, T., Liang, Y., Feng, X.: Belief rule-based classification system: extension of FRBCS in belief functions framework. Inf. Sci. 309, 26–49 (2015). https://doi.org/10.1016/j.ins.2015.03.005

    Article  MATH  Google Scholar 

  2. Xue, L., Huang, W., Wang, J.: Ranking-based fuzzy min-max classification neural network. In: Wang, G., Lin, X., Hendler, J., Song, W., Xu, Z., Liu, G. (eds.) WISA 2020. LNCS, vol. 12432, pp. 352–364. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60029-7_33

    Chapter  Google Scholar 

  3. Yang, J.B., Liu, J., Wang, J., Sii, H.S., Wang, H.W.: Belief rule-base inference methodology using the evidential reasoning approach-RIMER. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 36(2), 266–285 (2006). https://doi.org/10.1109/TSMCA.2005.851270

    Article  Google Scholar 

  4. Hwang, C.L., Yoon, K.: Methods for multiple attribute decision making. In: Multiple Attribute Decision Making, pp. 58–191. Springer, Heidelberg (1981). https://doi.org/10.1007/978-3-642-48318-9_3

  5. Zadeh, L.A., Klir, G.J., Yuan, B.: Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected Papers, vol. 6. World Scientific, Singapore (1996). https://doi.org/10.1142/2895

  6. Dempster, A.P.: A generalization of Bayesian inference. J. R. Stat. Soc. Ser. B (Methodol.) 30(2), 205–232 (1968). https://doi.org/10.1111/j.2517-6161.1968.tb00722.x

    Article  MathSciNet  MATH  Google Scholar 

  7. Shafer, G.: A Mathematical Theory of Evidence, vol. 42. Princeton University Press, Princeton (1976). https://doi.org/10.2307/j.ctv10vm1qb

  8. Liu, J., Martinez, L., Calzada, A., Wang, H.: A novel belief rule base representation, generation and its inference methodology. Knowl.-Based Syst. 53, 129–141 (2013). https://doi.org/10.1016/j.knosys.2013.08.019

    Article  Google Scholar 

  9. Chen, N.N., Gong, X.T., Fu, Y.G.: Extended belief rule-based reasoning method based on an improved rule activation rate (in Chinese). CAAI Trans. Intell. Syst. 14(6), 1179–1188 (2019). https://doi.org/10.11992/tis.201906046

  10. Fang, W., Gong, X., Liu, G., Wu, Y., Fu, Y.: A balance adjusting approach of extended belief-rule-based system for imbalanced classification problem. IEEE Access 8, 41201–41212 (2020). https://doi.org/10.1109/ACCESS.2020.2976708

    Article  Google Scholar 

  11. Yang, L.H., Wang, Y.M., Su, Q., Fu, Y.G., Chin, K.S.: Multi-attribute search framework for optimizing extended belief rule-based systems. Inf. Sci. 370, 159–183 (2016). https://doi.org/10.1016/j.ins.2016.07.067

    Article  Google Scholar 

  12. Lin, Y.Q., Fu, Y.G., Su, Q., Wang, Y.M., Gong, X.T.: A rule activation method for extended belief rule base with VP-tree and MVP-tree. J. Intell. Fuzzy Syst. 33(6), 3695–3705 (2017). https://doi.org/10.3233/JIFS-17521

    Article  Google Scholar 

  13. Yang, L.H., Wang, Y.M., Lan, Y.X., Chen, L., Fu, Y.G.: A data envelopment analysis (DEA)-based method for rule reduction in extended belief-rule-based systems. Knowl.-Based Syst. 123, 174–187 (2017). https://doi.org/10.1016/j.knosys.2017.02.021

    Article  Google Scholar 

  14. Vassilvitskii, S., Arthur, D.: K-means++: the advantages of careful seeding. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1027–1035 (2006). http://ilpubs.stanford.edu:8090/778/

  15. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml

  16. Derrac, J., Chiclana, F., García, S., Herrera, F.: Evolutionary fuzzy k-nearest neighbors algorithm using interval-valued fuzzy sets. Inf. Sci. 329, 144–163 (2016). https://doi.org/10.1016/j.ins.2015.09.007

    Article  Google Scholar 

  17. Cordón, O., Del Jesus, M.J., Herrera, F.: A proposal on reasoning methods in fuzzy rule-based classification systems. Int. J. Approximate Reasoning 20(1), 21–45 (1999). https://doi.org/10.1016/S0888-613X(00)88942-2

    Article  Google Scholar 

  18. Bhardwaj, A., Tiwari, A., Bhardwaj, H., Bhardwaj, A.: A genetically optimized neural network model for multi-class classification. Expert Syst. Appl. 60, 211–221 (2016). https://doi.org/10.1016/j.eswa.2016.04.036

    Article  Google Scholar 

  19. Abellán, J., Baker, R.M., Coolen, F.P., Crossman, R.J., Masegosa, A.R.: Classification with decision trees from a nonparametric predictive inference perspective. Comput. Stat. Data Anal. 71, 789–802 (2014). https://doi.org/10.1016/j.csda.2013.02.009

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanggeng Fu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, L., Fu, Y., Chen, N., Ye, J., Liu, G. (2021). Rule Reduction for EBRB Classification Based on Clustering. In: Xing, C., Fu, X., Zhang, Y., Zhang, G., Borjigin, C. (eds) Web Information Systems and Applications. WISA 2021. Lecture Notes in Computer Science(), vol 12999. Springer, Cham. https://doi.org/10.1007/978-3-030-87571-8_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87571-8_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87570-1

  • Online ISBN: 978-3-030-87571-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics