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Abstract. When developing deep neural networks for segmenting in-
traoperative ultrasound images, several practical issues are encountered
frequently, such as the presence of ultrasound frames that do not contain
regions of interest and the high variance in ground-truth labels. In this
study, we evaluate the utility of a pre-screening classification network
prior to the segmentation network. Experimental results demonstrate
that such a classifier, minimising frame classification errors, was able to
directly impact the number of false positive and false negative frames.
Importantly, the segmentation accuracy on the classifier-selected frames,
that would be segmented, remains comparable to or better than those
from standalone segmentation networks. Interestingly, the efficacy of the
pre-screening classifier was affected by the sampling methods for train-
ing labels from multiple observers, a seemingly independent problem.
We show experimentally that a previously proposed approach, combin-
ing random sampling and consensus labels, may need to be adapted
to perform well in our application. Furthermore, this work aims to share
practical experience in developing a machine learning application that as-
sists highly variable interventional imaging for prostate cancer patients,
to present robust and reproducible open-source implementations, and
to report a set of comprehensive results and analysis comparing these
practical, yet important, options in a real-world clinical application.

1 Introduction

Many urological procedures for prostate cancer patients, such as ablation ther-
apy and needle biopsies, are guided by B-mode transrectal ultrasound images
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(TRUS) to identify and then monitor the shape and location of prostate glands
[2,11]. This application is useful for a number of interventional tasks, such as es-
timating the gland size, regions of pathological interest and surrounding healthy,
but vulnerable, tissues. However, due to variable acoustic coupling, inhomoge-
neous intensity distribution, and the necessity of real-time monitoring, delin-
eating the boundaries of prostate glands is a challenging task, even for expe-
rienced urologists. Deep neural networks have been proposed to automate this
process [1, 5, 7, 8, 14].

The performance of these networks relies on well-defined ground truth la-
bels. To date, there is no gold standard approach in many ultrasound imaging
applications with high inter- and intra-rater variability in labelling and its use
in training. Existing approaches deal with multiple labels by using a pixel-level
voting strategy or random sampling, both estimating the expected labels. In [12],
Sudre et. al observed that combining random and voting strategies during train-
ing improves stability and performance in the context of brain lesion detection.
In this paper, we consider labels from multiple independent raters and inves-
tigate the effect of different sampling strategies during segmentation, and test
these proposed sampling methods in the context of interventional ultrasound
imaging for prostate cancer patients.

In addition to the label variability, ultrasound data itself is known to be of
high variance, due to its user dependency and flexible use protocols. For exam-
ple, it is common that some frames do not contain the region of interest (ROI),
particularly due to the small size of the prostate gland in our application. The
presence of negative frames presents a key challenge in segmentation, as wrong-
fully segmenting a frame that does not contain the ROI could potentially lead
to misdiagnosis or damage to healthy tissues. Using a widely-used segmentation
accuracy metric based on overlap, such as Dice, to quantify this error can be
problematic. The naive implementation of Dice is independent of the number of
false positive pixels and the cost of negative frames may not be easily quantified
with respect to the cost of negative pixels when designing a new loss function.
For example, in the case of a handheld setting, relative positions and distances
in the out-of-plane direction between ultrasound frames are in general variable
and unknown, which may lead to an unspecified misjudgement of where the ROI
boundary is, given a false positive frame. A separate frame classification may
provide more intuitive user guidance when using the segmentation algorithms.

Limited work has been proposed to address the problem of negative frames
within medical image segmentation. In [3], false positives in a video object seg-
mentation task were reduced through the introduction of a post-processing clas-
sifier. In [10], meta-classification was used to detect false positive samples in
semantic segmentation. This has motivated a screening strategy in this work
that can detect negative frames before they are incorrectly segmented by the
segmentation network. Such a separately trained classification network can also
provide flexible control at test-time between false positive and false negative
rates on a frame-level, which is arguably more difficult to achieve by altering
threshold on pixel-level class probability in a segmentation network. Alternative
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approaches and different loss functions to address this issue are also discussed
or compared in this paper.

2 Methods

2.1 Segmentation network

U-Net [9], a fully convolutional neural network, is adapted from a well-established
reference implementation. Our network consists of 5 layers that starting with
initial 16 channels, with residual network blocks replacing the original individ-
ual convolutional layers to encourage fast convergence [4]. Images were nor-
malised to zero-mean and unit-variance. All the segmentation networks were
trained with a mini-batch size of 32, using the Adam optimiser [6] with an
exponential learning rate scheduler that minimises a soft Dice loss function:
LSoftDice =

2Σypred·ytrue

Σypred+Σytrue
, where Σ is the pixel-wise sum, ypred is the predicted

class probabilities and ytrue is the ground truth mask. The Dice value was also
used to monitor validation set performance. Random data augmentations are
applied during training with probability p = 0.3, including random affine de-
formations (rotation |θr| ≤ 2.5 deg, maximum translation 0.05, scaling in range
0.95-1), and random flipping along the vertical axis. These augmentations were
empirically found robust for the TRUS data in this application.

2.2 Frame classification network

A reference-quality ResNeXt [15] classifier pre-trained on ImageNet was adapted
to predict whether a prostate is present based on the frame-level consensus.
The network was modified to accept single channel and resized to 224 × 224.
The weights are normalised with mean and standard deviation (0.449, 0.226),
representing the average of the three original RGB channels. This model was
trained with an initial learning rate of 0.0001, using the Adam optimiser and a
binary cross-entropy loss function.

2.3 Label sampling

Six different label sampling methods were investigated and evaluation results
on the hold-out test data are reported. The methods are summarised in Table
1. The combination label strategy randomly selects a certain percentage of the
data to perform the vote sampling method and applies the random sampling
method to the remainder data.

2.4 Pre-screening strategy

The classifier can be combined with the segmentation network to facilitate a
pre-screening strategy illustrated in Figure 1d. The frame will pass to the seg-
mentation network only if the classifer-predicted probability is greater than a



4 Authors Suppressed Due to Excessive Length

Table 1: Summary of label sampling methods. Soft mean refers to the non-
rounded mean of labels, treated as a continuous probability map.

Label strategy Description

Vote Pixel-level majority voting from the 3 labels

Random Single label selected at random

Mean Soft mean of the 3 labels

Combination (25%) Combination of 25% vote and 75% random labels

Combination (50%) Combination of 50% vote and 50% random labels

Combination (75%) Combination of 75% vote and 25% random labels

set threshold in logits, whose values from 0 to 5 are tested based on observations
of resulting classification accuracy range on the validation set. Different ways
of combining the classification and segmentation networks is also possible and
remains interesting for future investigation.

2.5 Loss functions for segmentation

For a given label sampling method, we test different segmentation loss functions.
This allows us to ascertain whether the frame-level classification can also be
handled by the segmentation directly, as opposed to the above-described pre-
screening. Two alternatives are considered in addition to the Dice loss function,
a combo loss with an equal weighting between dice loss and binary cross entropy
loss (BCE), and a weighted binary cross entropy loss based on [13] (W-BCE).
The equation for the Dice-BCE loss is given by:

Dice-BCE = 0.5× (1−Dice) + 0.5×BCE (1)

where the binary cross entropy loss is defined by:

BCE = −
N∑
xn log pn + (1− xn) log (1− pn) (2)

where N is the number of pixels, xn is target class per pixel and pn is the
predicted probability from the network. The BCE loss can be modified to assign
weights, wc to each class (c = 0, 1) such that:

W -BCE = −
N∑
w0xn log pn + w1(1− xn) log (1− pn) (3)

where in our case, w1 = 1∑N
xn=1

and w0 = 1− w1.

2.6 Evaluation experiments

The Dice coefficient is computed on positive frames excluding those that are
predicted to be negative by the segmentation network or by, when in use, the
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pre-screening classifer, to ensure that we do not penalise the network for cor-
rectly identifying negative frames (a 0 Dice coefficient). In addition, we report
frame-level classification performance for both frame classifer and segmentation
network, when the latter is used without pre-screening. In this case, rates of
false positive frames and their false positive area are computed. All results are
reported on the independent hold-out test set. p-values from t-tests at signifi-
cance level of 0.05 are also reported when comparison is made.

The dataset used in this study contains 2D B-mode transrectal ultrasound
frames from 250 patients. For each subject, a range of 50-120 frames were ac-
quired at the start of the procedure, with a bi-plane transperineal ultrasound
probe (C41L47RP, HI-VISION Preirus, Hitachi Medical Systems Europe) and a
digital transperineal stepper (D&K Technologies GmbH, Barum, Germany) to
view and scan entire gland. For labelling, 6644 ultrasound images were sampled
with size 403 × 361 and were manually annotated by three independent raters.
A set of example frames are shown in Fig. 1a-1c with varying label agreement.

At the patient level, 5224 and 1346 frames were sampled for training/validation
and hold-out test, an 80:20 split. The networks were trained using a 3-fold cross-
validation ensemble strategy, with 3484 and 1740 samples for training and val-
idation in each fold, respectively. Predictions from each of the networks were
averaged at test-time to generate a single probability map that is converted into
a mask during inference on the hold-out set. The code is made publicly available
at https://github.com/sophmrtn/RectAngle.

3 Results and Discussion

Label sampling The performance of the segmentation network for each sam-
pling method is shown via box plots in Fig. 2a. The mean label sampling strategy
was statistically different (all p−values < 0.05) from all other methods. All other
sampling methods obtained similar performance.

The pre-screening classifier achieved an accuracy of 97.1% on the validation
dataset during training. Table 2 summarises the Dice values with and without
the pre-screening for the six label sampling methods. The classifier is shown to
improve performance significantly for the mean label strategy (p = 0.001).

Classification threshold The threshold used by the classifier plays a role in
controlling the false positive frame rate seen by the segmentation network and
can therefore be tuned as a variable at test time. We therefore tested a range of
thresholds from 0 to 5 corresponding to probabilities of 0.5 to 1 and observe the
effect on the mean Dice for each label sampling method. This is shown in Fig.
2b. From this plot the combination of consensus and random labels with a ratio
of 25% and 75% respectively leads to the highest Dice score and this increases
with threshold in general for all label sampling methods.

Pre-screening classifier The pre-screened segmentation model can be used
to examine the effect on the number of false positives/negatives on both frame

https://github.com/sophmrtn/RectAngle
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(a) (b) (c)

(d)

Fig. 1: a-c) Example frames are shown with manual labels from three observers
in green, red and blue respectively. a) All labels are in close agreement. b) Two
labellers agree however one annotation is significantly larger. c) Only two la-
bellers identify the prostate presence, but with slightly different locations. d)
Flowchart to describe the pre-screening strategy.

Table 2: The Dice coefficient values on the hold-out test data (mean ± std. dev.)
with and without pre-screening. The median values are reported for inspecting
skewness. Statistically significant improvement (p < 0.05) are in bold.

Sampling Mean Dice Median Dice

Method w w/o p-val w w/o

Vote 0.866 ± 0.180 0.856 ± 0.197 0.220 0.927 0.926

Random 0.867 ± 0.184 0.857 ± 0.200 0.223 0.926 0.925

Mean 0.861 ± 0.184 0.831 ± 0.236 0.001 0.920 0.917

Combine (25%) 0.866 ± 0.182 0.857 ± 0.198 0.273 0.926 0.925

Combine (50%) 0.867 ± 0.180 0.859 ± 0.197 0.328 0.927 0.927

Combine (75%) 0.870 ± 0.174 0.861 ± 0.190 0.253 0.926 0.925
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(a) (b)

Fig. 2: a) Dice coefficients for positive predictions on hold-out set of 1346 frames.
Dashed line shows mean Dice values for each strategy, with shading indicating
the standard deviation from the mean. b) The mean Dice score for positive
frames is reported for a range of classification thresholds for each label sampling
method during segmentation. The standard deviation is omitted in the figure
for readability, where for the combination strategy (25%) we obtain a standard
deviation of 0.15 at a threshold of 5.

and pixel levels. We also use the modified loss functions to compare the per-
formance of the segmentation network alone with a loss chosen to tackle both
tasks simultaneously. The FPR and FNR is computed for the different labelling
strategies in each case as shown in Fig. 3a. From these results we observe a slight
decrease in the number of false positive frames as the threshold increases. The
most noticeable effect of threshold is on the FNR for which a larger threshold
leads to a greater number of false negative frames. On the other hand, the loss
function is shown to be effective to some extent at addressing the frame-level
classification task. The losses seemed to lead to a lower false negatives than false
positive frames, although altering the weight to control the two type of frame-
level errors does not seem to be straightforward. This is consistent with what
can be observed from the areas of the false segmentations.

Further inspecting the labels from three observers overlaid with those frames,
on which the segmentation and classifier networks disagreed for the frame clas-
sification, as shown in the examples in Figure 3b,c. Interestingly, relatively large
disagreement between observers can also be found on those network-disagreed
images. This may suggest a correlation between the label sampling methods and
the frame classifying strategy. This is also supported by the results in Table 2,
where, for example, highest median Dice values may come from different label
sampling methods, between models with and without the pre-screening strategy.

This paper reports experiment results with and without an independently-
trained pre-screening classifer. Future work may investigate a classifer trained
simultaneously with the segmentation network, such that the segmentation net-
work could be optimised on representative frames that need to be segmented.
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Fig. 3: a) False positive (FP) and false negative (FN) rates (frame-level) and
areas (pixel-level) are computed for each label sampling method using differ-
ent screening thresholds. We also show the rates achieved using different loss
functions; Dice, Dice-BCE and W-BCE, using the segmentation-only approach
(Dotted black line used to separate these cases, with classifier used in results
left of line and segmentation-only results to the right) (b-c) Example frames
with manual labels, where the classifier and segmentation network disagreed. b)
Classifier predicted the presence of prostate, but segmented mask is empty. c)
Classifier predicted an empty frame, but the prostate was segmented. In both
cases, only two labellers were in agreement, but not over the size and position
of the prostate.

4 Conclusion

In this study, we investigated different strategies for handling multiple labels for
intraoperative prostate gland segmentation on TRUS images. We demonstrate
that disagreements between labellers affect the performance of a U-Net segmen-
tation network due to the difficulty when defining a ground truth. Whilst there
were no significant differences between the label sampling methods themselves
using the Dice loss, by introducing a pre-screening strategy with a separate clas-
sifier, we show an improved segmentation accuracy by removing false positive
frames. This was observed for the mean label strategy (p = 0.001 < 0.05) be-
tween the mean Dice with, and without, pre-screening. Our results also agree in
general with existing findings that using a combination of random and consensus
labels (25%, 75% respectively) during training leads to better, and more stable
performance with a mean Dice of 0.87 ± 0.17. Alternatively, the segmentation
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network can be trained using loss functions that aim to address the frame-level
classification task in parallel with optimising the Dice score. For these models, we
find a better ability to handle false negative frames than using a pre-screening
classifier. However, the classifier still provides better flexibility to control the
frame-level accuracy during test-time. This work illustrates the potential ben-
efit of pre-screening prior to classification during real-time ultrasound-guided
procedures where the reduction of a specific error type may be more desirable.
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