Skip to main content

Improving Phenotype Prediction Using Long-Range Spatio-Temporal Dynamics of Functional Connectivity

  • Conference paper
  • First Online:
Machine Learning in Clinical Neuroimaging (MLCN 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 13001))

Included in the following conference series:

  • 1695 Accesses

Abstract

The study of functional brain connectivity (FC) is important for understanding the underlying mechanisms of many psychiatric disorders. Many recent analyses adopt graph convolutional networks, to study non-linear interactions between functionally-correlated states. However, although patterns of brain activation are known to be hierarchically organised in both space and time, many methods have failed to extract powerful spatio-temporal features. To overcome those challenges, and improve understanding of long-range functional dynamics, we translate an approach, from the domain of skeleton-based action recognition, designed to model interactions across space and time. We evaluate this approach using the Human Connectome Project (HCP) dataset on sex classification and fluid intelligence prediction. To account for subject topographic variability of functional organisation, we modelled functional connectomes using multi-resolution dual-regressed (subject-specific) ICA nodes. Results show a prediction accuracy of 94.4% for sex classification (an increase of 6.2% compared to other methods), and an improvement of correlation with fluid intelligence of 0.325 vs 0.144, relative to a baseline model that encodes space and time separately. Results suggest that explicit encoding of spatio-temporal dynamics of brain functional activity may improve the precision with which behavioural and cognitive phenotypes may be predicted in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The code for this experiment will be made available at: http://www.github.com/metrics-lab/ST-fMRI/.

References

  1. Beckmann, C., Smith, S.: Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans. Med. Imaging 23(2), 137–152 (2004)

    Article  Google Scholar 

  2. Bijsterbosch, J.D., Woolrich, M.W., Glasser, M.F., Robinson, E.C., Beckmann, C.F., et al.: The relationship between spatial configuration and functional connectivity of brain regions. Elife (2018)

    Google Scholar 

  3. Dsouza, N.S., Nebel, M.B., Crocetti, D., Robinson, J., Mostofsky, S., et al.: M-GCN: a multimodal graph convolutional network to integrate functional and structural connectomics data to predict multidimensional phenotypic characterizations (2021)

    Google Scholar 

  4. Finn, E.S., Shen, X., Scheinost, D., Rosenberg, M.D., Huang, J., et al.: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity. Nat. Neurosci. 18(11), 1664–1671 (2015)

    Article  Google Scholar 

  5. Gadgil, S., Zhao, Q., Pfefferbaum, A., Sullivan, E.V., Adeli, E., et al.: Spatio-temporal graph convolution for resting-state fMRI analysis (2021)

    Google Scholar 

  6. Glasser, M.F., Coalson, T.S., Robinson, E.C., Hacker, C.D., Harwell, J., et al.: A multi-modal parcellation of human cerebral cortex. Nature 7615, 171–178 (2016)

    Article  Google Scholar 

  7. Glasser, M.F., Sotiropoulos, S.N., Wilson, J.A., Coalson, T.S., Fischl, B., et al.: The minimal preprocessing pipelines for the human connectome project. NeuroImage 80, 105–124 (2013)

    Article  Google Scholar 

  8. Harrison, S.J., Bijsterbosch, J.D., Segerdahl, A.R., Fitzgibbon, S.P., Farahibozorg, S.R., et al.: Modelling subject variability in the spatial and temporal characteristics of functional modes. NeuroImage 222, 117226 (2020)

    Google Scholar 

  9. Huang, Z.A., Zhu, Z., Yau, C.H., Tan, K.C.: Identifying autism spectrum disorder from resting-state fMRI using deep belief network. IEEE Trans. Neural Netw. Learn. Syst. (2020)

    Google Scholar 

  10. Kim, B.H., Ye, J.C., Kim, J.J.: Learning dynamic graph representation of brain connectome with spatio-temporal attention (2021)

    Google Scholar 

  11. Kong, R., Li, J., Orban, C., Sabuncu, M.R., Liu, H., et al.: Spatial topography of individual-specific cortical networks predicts human cognition, personality, and emotion. Cereb. Cortex 29(6), 2533–2551 (2019)

    Article  Google Scholar 

  12. Kong, R., Yang, Q., Gordon, E., Xue, A., Yan, X., et al.: Individual-specific areal-level parcellations improve functional connectivity prediction of behavior. bioRxiv (2021)

    Google Scholar 

  13. Ktena, S.I., Parisot, S., Ferrante, E., Rajchl, M., Lee, M., et al.: Metric learning with spectral graph convolutions on brain connectivity networks. NeuroImage 169, 431–442 (2018)

    Article  Google Scholar 

  14. Li, X., Zhou, Y., Gao, S., Dvornek, N., Zhang, M., et al.: BrainGNN: interpretable brain graph neural network for fMRI analysis. bioRxiv (2020)

    Google Scholar 

  15. Liégeois, R., Li, J., Kong, R., Orban, C., Van De Ville, D., et al.: Resting brain dynamics at different timescales capture distinct aspects of human behavior. Nat. Commun. 10(1), 1–9 (2019)

    Article  Google Scholar 

  16. Liu, Z., Zhang, H., Chen, Z., Wang, Z., Ouyang, W.: Disentangling and unifying graph convolutions for skeleton-based action recognition (2020)

    Google Scholar 

  17. Marquand, A.F., Kia, S.M., Zabihi, M., Wolfers, T., Buitelaar, J.K., et al.: Conceptualizing mental disorders as deviations from normative functioning. Mol. Psychiatry 10, 1415–1424 (2019)

    Article  Google Scholar 

  18. Marquand, A.F., Rezek, I., Buitelaar, J., Beckmann, C.F.: Understanding heterogeneity in clinical cohorts using normative models: beyond case-control studies. Biol. Psychiatry 80(7), 552–561 (2016)

    Article  Google Scholar 

  19. Pervaiz, U., Vidaurre, D., Gohil, C., Smith, S.M., Woolrich, M.W.: Multi-dynamic modelling reveals strongly time-varying resting fMRI correlations. bioRxiv (2021)

    Google Scholar 

  20. Pervaiz, U., Vidaurre, D., Woolrich, M.W., Smith, S.M.: Optimising network modelling methods for fMRI. NeuroImage 211, 116604 (2020)

    Google Scholar 

  21. Robinson, E.C., Garcia, K., Glasser, M.F., Chen, Z., Coalson, T.S., et al.: Multimodal surface matching with higher-order smoothness constraints. NeuroImage 167, 453–465 (2018)

    Article  Google Scholar 

  22. Robinson, E.C., Jbabdi, S., Glasser, M.F., Andersson, J., Burgess, G.C., et al.: MSM: a new flexible framework for multimodal surface matching. NeuroImage 100, 414–426 (2014)

    Article  Google Scholar 

  23. Smith, S.M., Nichols, T.E., Vidaurre, D., Winkler, A.M., Behrens, T.E., et al.: A positive-negative mode of population covariation links brain connectivity, demographics and behavior (2015)

    Google Scholar 

  24. Smith, S.M., Vidaurre, D., Beckmann, C.F., Glasser, M.F., Jenkinson, M., et al.: Functional connectomics from resting-state fMRI. Trends Cogn. Sci. 17(12), 666–682 (2013)

    Article  Google Scholar 

  25. Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E., Yacoub, E., et al.: The WU-Minn human connectome project: an overview. NeuroImage 80, 62–79 (2013)

    Article  Google Scholar 

  26. Vidaurre, D., Abeysuriya, R., Becker, R., Quinn, A.J., Alfaro-Almagro, F., et al.: Discovering dynamic brain networks from big data in rest and task. NeuroImage 180, 646–656 (2018)

    Article  Google Scholar 

  27. Vidaurre, D., Smith, S.M., Woolrich, M.W.: Brain network dynamics are hierarchically organized in time. Proc. Natl. Acad. Sci. 114(48), 12827–12832 (2017)

    Article  Google Scholar 

  28. Wolfers, T., Rokicki, J., Alnæs, D., Berthet, P., Agartz, I., et al.: Replicating extensive brain structural heterogeneity in individuals with schizophrenia and bipolar disorder. Hum. Brain Mapp. 42(8), 2546–2555 (2021)

    Article  Google Scholar 

  29. Yan, S., Xiong, Y., Lin, D.: Spatial temporal graph convolutional networks for skeleton-based action recognition (2018)

    Google Scholar 

Download references

Acknowledgments

Data were provided by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University [25].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Dahan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dahan, S., Williams, L.Z.J., Rueckert, D., Robinson, E.C. (2021). Improving Phenotype Prediction Using Long-Range Spatio-Temporal Dynamics of Functional Connectivity. In: Abdulkadir, A., et al. Machine Learning in Clinical Neuroimaging. MLCN 2021. Lecture Notes in Computer Science(), vol 13001. Springer, Cham. https://doi.org/10.1007/978-3-030-87586-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87586-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87585-5

  • Online ISBN: 978-3-030-87586-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics