Skip to main content

H3K27M Mutations Prediction for Brainstem Gliomas Based on Diffusion Radiomics Learning

  • Conference paper
  • First Online:
Machine Learning in Clinical Neuroimaging (MLCN 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 13001))

Included in the following conference series:

Abstract

H3K27M mutation is the most common mutation in brainstem gliomas (BSGs), which is related with highly invasive neoplasms and poor prognosis. Accurate presurgical and noninvasive prediction of H3K27M mutations based on preoperative multi-modal neuroimaging is of great clinical value in the diagnosis, prognosis and therapeutic selection of BSGs. Traditional BSG radiomics models usually only focus on tumor local morphometric characteristics. However, given that highly invasive BSGs may significantly affect large-scale brain network connectivity, we reasonably infer that local radiomics and global connectomics may provide different perspectives for H3K27M genotype prediction. Therefore, we define a graph-based diffusion radiomics learning model to integrate these two kinds of features seamlessly. Specifically, edges of the defined brain network are determined by neural fiber connections, while node features of brainstem are governed by local tumor radiomics. Upon this model, we further propose a multi-mechanism diffusion convolutional network to couple multi-modal information and generate a joint representation for brain disease diagnosis. By graph diffusion convolution, the local radiomics information spread along the brain network structure to enhance graph representation learning, and eventually the learned diffusion radiomics features contribute to disease prediction. Experiments on a real BSG dataset demonstrate the effectiveness and advantages of our proposed method for preoperative prediction of H3K27M statuses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Laigle-Donadey, F., Doz, F., Delattre, J.-Y.: Brainstem gliomas in children and adults. Curr. Opin. Oncol. 20, 662–667 (2008)

    Article  Google Scholar 

  2. Khuong-Quang, D.-A., et al.: K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol. 124, 439–447 (2012)

    Google Scholar 

  3. Hashizume, R., et al.: Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma. Nat. Med. 20, 1394–1396 (2014)

    Article  Google Scholar 

  4. Aerts, H., et al.: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 5, 4006 (2014)

    Google Scholar 

  5. Pan, C.-C., et al.: A machine learning-based prediction model of H3K27M mutations in brainstem gliomas using conventional MRI and clinical features. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 130, 172–179 (2019)

    Article  Google Scholar 

  6. Su, X., et al.: Automated machine learning based on radiomics features predicts H3K27M mutation in midline gliomas of the brain. Neuro Oncol. 22, 393–401 (2020)

    Google Scholar 

  7. Hart, M.G., Price, S.J., Suckling, J.: Connectome analysis for pre-operative brain mapping in neurosurgery. Brit. J. Neurosurg. 30(5), 506–517 (2016)

    Google Scholar 

  8. Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52, 1059–1069 (2010)

    Article  Google Scholar 

  9. Chen, L., et al.: Multi-label nonlinear matrix completion with transductive multi-task feature selection for joint MGMT and IDH1 status prediction of patient with high-grade gliomas. IEEE Trans. Med. Imaging 37(8), 1775–1787 (2018)

    Article  Google Scholar 

  10. Li, Y., et al.: Less efficient information transfer in Cys-Allele carriers of DISC1: a brain network study based on diffusion MRI. Cereb. Cortex 23, 1715–1723 (2013)

    Article  Google Scholar 

  11. Kawahara, J., et al.: BrainNetCNN: convolutional neural networks for brain networks; towards predicting neurodevelopment. Neuroimage 146, 1038–1049 (2017)

    Article  Google Scholar 

  12. Liu, J., et al.: A cascaded deep convolutional neural network for joint segmentation and genotype prediction of brainstem gliomas. IEEE Trans. Biomed. Eng. 65(9), 1943–1952 (2018)

    Article  Google Scholar 

  13. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Yu, P.: A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32(1), 4–24 (2021)

    Article  MathSciNet  Google Scholar 

  14. Bessadok, A., Mahjoub, M. A., Rekik, I.: Graph neural networks in network neuroscience. arXiv preprint arXiv:2106.03535 (2021)

  15. Zhang, W., Zhan, L., Thompson, P., Wang, Y.: Deep representation learning for multimodal brain networks. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12267, pp. 613–624. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_60

    Chapter  Google Scholar 

  16. Huang, J., Zhou, L., Wang, L., Zhang, D.: Integrating functional and structural connectivities via diffusion-convolution-bilinear neural network. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 691–699. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_77

    Chapter  Google Scholar 

  17. Atwood, J., Towsley, D.: Diffusion-convolutional neural networks. In: Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems. Curran Associates, Inc. (2016)

    Google Scholar 

  18. Fedorov, A., et al.: 3D slicer as an image computing platform for the quantitative imaging network. Magn. Reson. Imaging 30, 1323–1341 (2012)

    Article  Google Scholar 

  19. van Griethuysen, J.J.M., et al.: Computational radiomics system to decode the radiographic phenotype. Cancer Res. 77, e104–e107 (2017)

    Article  Google Scholar 

  20. Cui, Z., Zhong, S., Xu, P., He, Y., Gong, G.: PANDA: a pipeline toolbox for analyzing brain diffusion images. Front. Hum. Neurosci. 7, 42 (2013)

    Google Scholar 

  21. Tzourio-Mazoyer, N., et al.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15, 273–289 (2002)

    Article  Google Scholar 

  22. Goldstein, J.M., et al.: Hypothalamic abnormalities in schizophrenia: sex effects and genetic vulnerability. Biol. Psychiatry 61, 935–945 (2007)

    Google Scholar 

  23. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: International Conference on Learning Representations (ICLR) (2018)

    Google Scholar 

  24. Kipf, T., Welling, M.: Semi-supervised classification with graph convolutional networks. In: International Conference on Learning Representations (ICLR) (2017)

    Google Scholar 

  25. Lee, J., Lee, I., Kang, J.: Self-attention graph pooling. arXiv preprint arXiv:1904.08082 (2019)

  26. Habel, U., et al.: Amygdala activation and facial expressions: explicit emotion discrimination versus implicit emotion processing. Neuropsychologia 45(10), 2369–2377 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge supports from Beijing Municipal Natural Science Foundation (7212202), and National Natural Science Foundation of China (82027807, 81771940).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongen Liao .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 144 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, N., Xiao, X., Wang, X., Gu, G., Zhang, L., Liao, H. (2021). H3K27M Mutations Prediction for Brainstem Gliomas Based on Diffusion Radiomics Learning. In: Abdulkadir, A., et al. Machine Learning in Clinical Neuroimaging. MLCN 2021. Lecture Notes in Computer Science(), vol 13001. Springer, Cham. https://doi.org/10.1007/978-3-030-87586-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87586-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87585-5

  • Online ISBN: 978-3-030-87586-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics