Abstract
Biomechanical modeling of tissue deformation can be used to simulate different scenarios of longitudinal brain evolution. In this work, we present a deep learning framework for hyper-elastic strain modelling of brain atrophy, during healthy ageing and in Alzheimer’s Disease. The framework directly models the effects of age, disease status, and scan interval to regress regional patterns of atrophy, from which a strain-based model estimates deformations. This model is trained and validated using 3D structural magnetic resonance imaging data from the ADNI cohort. Results show that the framework can estimate realistic deformations, following the known course of Alzheimer’s disease, that clearly differentiate between healthy and demented patterns of ageing. This suggests the framework has potential to be incorporated into explainable models of disease, for the exploration of interventions and counterfactual examples.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bae, J.B., et al.: Identification of Alzheimer’s disease using a convolutional neural network model based on T1-weighted magnetic resonance imaging. Sci. Rep. 10(1), 1–10 (2020)
Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800, August 2019. https://doi.org/10.1109/TMI.2019.2897538, http://arxiv.org/abs/1809.05231
Bass, C., et al.: Image synthesis with a convolutional capsule generative adversarial network, December 2018. https://openreview.net/forum?id=rJen0zC1lE
Bass, C., da Silva, M., Sudre, C., Tudosiu, P.D., Smith, S., Robinson, E.: ICAM: interpretable classification via disentangled representations and feature attribution mapping. In: Advances in Neural Information Processing Systems, vol. 33 (2020)
Baumgartner, C.F., Koch, L.M., Tezcan, K.C., Ang, J.X., Konukoglu, E.: Visual feature attribution using wasserstein GANs, June 2018. http://arxiv.org/abs/1711.08998
Cardoso, M.J., et al.: Geodesic information flows: spatially-variant graphs and their application to segmentation and fusion. IEEE Trans. Med. Imaging 34(9), 1976–1988 (2015). https://doi.org/10.1109/TMI.2015.2418298
Carmichael, O., McLaren, D.G., Tommet, D., Mungas, D., Jones, R.N., Initiative, A.D.N., et al.: Coevolution of brain structures in amnestic mild cognitive impairment. NeuroImage 66, 449–456 (2013)
Ferreira, D., et al.: Distinct subtypes of Alzheimer’s disease based on patterns of brain atrophy: longitudinal trajectories and clinical applications. Sci. Rep. 7(1), 1–13 (2017). https://doi.org/10.1038/srep46263
Frisoni, G.B., Fox, N.C., Jack, C.R., Scheltens, P., Thompson, P.M.: The clinical use of structural MRI in Alzheimer disease. Nat. Rev. Neurol. 6(2), 67–77 (2010)
Jenkinson, M., Smith, S.: A global optimisation method for robust affine registration of brain images. Med. Image Anal. 5(2), 143–156 (2001)
Khan, N.M., Abraham, N., Hon, M.: Transfer learning with intelligent training data selection for prediction of Alzheimer’s disease. IEEE Access 7, 72726–72735 (2019)
Khanal, B., Lorenzi, M., Ayache, N., Pennec, X.: A Biophysical Model of Shape Changes due to Atrophy in the Brain with Alzheimer’s Disease. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8674, pp. 41–48. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10470-6_6
Khanal, B., Lorenzi, M., Ayache, N., Pennec, X.: A biophysical model of brain deformation to simulate and analyze longitudinal MRIs of patients with Alzheimer’s disease. NeuroImage 134, 35–52 (2016). https://doi.org/10.1016/j.neuroimage.2016.03.061, http://www.sciencedirect.com/science/article/pii/S1053811916300052
Bigolin Lanfredi, R., Schroeder, J.D., Vachet, C., Tasdizen, T.: Interpretation of Disease Evidence for Medical Images Using Adversarial Deformation Fields. In: Martel, A.L., Abolmaesumi, P., Stoyanov, D., Mateus, D., Zuluaga, M.A., Zhou, S.K., Racoceanu, D., Joskowicz, L. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 738–748. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_71
Li, H., Habes, M., Wolk, D.A., Fan, Y.: Alzheimer’s disease neuroimaging initiative and the australian imaging biomarkers and lifestyle study of aging: a deep learning model for early prediction of Alzheimer’s disease dementia based on hippocampal magnetic resonance imaging data. Alzheimer’s Dement. 15(8), 1059–1070 (2019). https://doi.org/10.1016/j.jalz.2019.02.007, https://alz-journals.onlinelibrary.wiley.com/doi/abs/10.1016/j.jalz.2019.02.007
Pawlowski, N., Castro, D.C., Glocker, B.: Deep structural causal models for tractable counterfactual inference, June 2020. arXiv:2006.06485 [cs, stat], http://arxiv.org/abs/2006.06485
Rabinovici, G., et al.: Distinct MRI atrophy patterns in autopsy-proven Alzheimer’s disease and frontotemporal lobar degeneration. Am. J. Alzheimer’s Dis. Dement. & #x00AE; 22(6), 474–488 (2008)
Richman, D.P., Stewart, R.M., Hutchinson, J.W., Caviness, V.S.: Mechanical model of brain convolutional development. Sci. (New York, N.Y.) 189(4196), 18–21 (1975). doi: 10.1126/science.1135626
Rodriguez, E.K., Hoger, A., McCulloch, A.D.: Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27(4), 455–467 (1994). https://doi.org/10.1016/0021-9290(94)90021-3
Tallinen, T., Chung, J.Y., Biggins, J.S., Mahadevan, L.: Gyrification from constrained cortical expansion. Proc. Natl. Acad. Sci. 111(35), 12667–12672 (2014). https://doi.org/10.1073/pnas.1406015111, https://www.pnas.org/content/111/35/12667
Tallinen, T., Chung, J.Y., Rousseau, F., Girard, N., Lefèvre, J., Mahadevan, L.: On the growth and form of cortical convolutions. Nat. Phys. 12(6), 588–593 (2016). https://doi.org/10.1038/nphys3632, https://www.nature.com/articles/nphys3632
Xu, G., Knutsen, A.K., Dikranian, K., Kroenke, C.D., Bayly, P.V., Taber, L.A.: Axons pull on the brain, but tension does not drive cortical folding. J. Biomech. Eng. 132(7), 071013 (2010). https://doi.org/10.1115/1.4001683
Young, J.M., Yao, J., Ramasubramanian, A., Taber, L.A., Perucchio, R.: Automatic generation of user material subroutines for biomechanical growth analysis. J. Biomech. Eng. 132(10), 104505 (2010). https://doi.org/10.1115/1.4002375, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2996139/
Acknowledgements
The data used in this work was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Silva, M.D., Sudre, C.H., Garcia, K., Bass, C., Cardoso, M.J., Robinson, E.C. (2021). Distinguishing Healthy Ageing from Dementia: A Biomechanical Simulation of Brain Atrophy Using Deep Networks. In: Abdulkadir, A., et al. Machine Learning in Clinical Neuroimaging. MLCN 2021. Lecture Notes in Computer Science(), vol 13001. Springer, Cham. https://doi.org/10.1007/978-3-030-87586-2_2
Download citation
DOI: https://doi.org/10.1007/978-3-030-87586-2_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-87585-5
Online ISBN: 978-3-030-87586-2
eBook Packages: Computer ScienceComputer Science (R0)