Skip to main content

Segmentation of Peripancreatic Arteries in Multispectral Computed Tomography Imaging

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2021)

Abstract

Pancreatic ductal adenocarcinoma is an aggressive form of cancer with a poor prognosis, where the operability and hence chance of survival is strongly affected by the tumor infiltration of the arteries. In an effort to enable an automated analysis of the relationship between the local arteries and the tumor, we propose a method for segmenting the peripancreatic arteries in multispectral CT images in the arterial phase. A clinical dataset was collected, and we designed a fast semi-manual annotation procedure, which requires around 20 min of annotation time per case. Next, we trained a U-Net based model to perform binary segmentation of the peripancreatic arteries, where we obtained a near perfect segmentation with a Dice score of \(95.05\%\) in our best performing model. Furthermore, we designed a clinical evaluation procedure for our models; performed by two radiologists, yielding a complete segmentation of \(85.31\%\) of the clinically relevant arteries, thereby confirming the clinical relevance of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: 12th \(\{\)USENIX\(\}\) Symposium on Operating Systems Design and Implementation (\(\{\)OSDI\(\}\) 16), pp. 265–283 (2016)

    Google Scholar 

  2. Blazer, M., Wu, C., et al.: Neoadjuvant modified (m) folfirinox for locally advanced unresectable (lapc) and borderline resectable (brpc) adenocarcinoma of the pancreas. Ann. Surg. Oncol. 22(4), 1153–1159 (2015)

    Article  Google Scholar 

  3. Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A., Delp, S. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0056195

    Chapter  Google Scholar 

  4. Gerl, S., et al.: A distance-based loss for smooth and continuous skin layer segmentation in optoacoustic images. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 309–319. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_30

    Chapter  Google Scholar 

  5. Isaji, S., Mizuno, S., et al.: International consensus on definition and criteria of borderline resectable pancreatic ductal adenocarcinoma 2017. Pancreatology 18(1), 2–11 (2018)

    Article  Google Scholar 

  6. Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: No new-net. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 234–244. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_21

    Chapter  Google Scholar 

  7. Kaissis, G.A., Lohöfer, F.K., et al.: Borderline-resectable pancreatic adenocarcinoma: contour irregularity of the venous confluence in pre-operative computed tomography predicts histopathological infiltration. PloS one 14(1), e0208717 (2019)

    Google Scholar 

  8. Keshwani, D., Kitamura, Y., Ihara, S., Iizuka, S., Simo-Serra, E.: TopNet: topology preserving metric learning for vessel tree reconstruction and labelling. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 14–23. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_2

    Chapter  Google Scholar 

  9. Kimura, K., Amano, R., et al.: Clinical and pathological features of five-year survivors after pancreatectomy for pancreatic adenocarcinoma. World J. Surg. Oncol. 12(1), 1–8 (2014)

    Article  Google Scholar 

  10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations, ICLR 2015 (2015)

    Google Scholar 

  11. Law, M.W.K., Chung, A.C.S.: Three dimensional curvilinear structure detection using optimally oriented flux. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5305, pp. 368–382. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88693-8_27

    Chapter  Google Scholar 

  12. Navarro, F., et al.: Shape-aware complementary-task learning for multi-organ segmentation. In: Suk, H.-l, Liu, M., Yan, P., Lian, C. (eds.) MLMI 2019. LNCS, vol. 11861, pp. 620–627. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32692-0_71

    Chapter  Google Scholar 

  13. Niemeijer, M., Staal, J., et al.: Comparative study of retinal vessel segmentation methods on a new publicly available database. In: Medical Imaging 2004: Image Processing, vol. 5370, pp. 648–656. International Society for Optics and Photonics (2004)

    Google Scholar 

  14. Paetzold, J.C., Schoppe, O., et al.: Transfer learning from synthetic data reduces need for labels to segment brain vasculature and neural pathways in 3d. In: International Conference on Medical Imaging with Deep Learning-Extended Abstract Track (2019)

    Google Scholar 

  15. Pieper, S., Halle, M., Kikinis, R.: 3D Slicer. In: 2004 2nd IEEE International Symposium on Biomedical Imaging: From Nano to Macro (IEEE Cat No. 04EX821), pp. 632–635. IEEE (2004)

    Google Scholar 

  16. Qasim, A.B., et al.: Red-gan: attacking class imbalance via conditioned generation. yet another medical imaging perspective. In: Medical Imaging with Deep Learning, pp. 655–668. PMLR (2020)

    Google Scholar 

  17. Rassouli, N., Etesami, M., Dhanantwari, A., Rajiah, P.: Detector-based spectral ct with a novel dual-layer technology: principles and applications. Insights Into Imaging 8(6), 589–598 (2017)

    Article  Google Scholar 

  18. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  19. Shit, S., Paetzold, J.C., et al.: clDice - a novel topology-preserving loss function for tubular structure segmentation. In: CVPR (2021)

    Google Scholar 

  20. Tang, X., Huang, B., et al.: Celiac trunk segmentation incorporating with additional contour constraint. Applied Intelligence, pp. 1–12 (2021)

    Google Scholar 

  21. Tetteh, G., Efremov, V., et al.: Deepvesselnet: vessel segmentation, centerline prediction, and bifurcation detection in 3-D angiographic volumes. Front. Neurosci. 14, 1285 (2020)

    Google Scholar 

  22. Todorov, M.I., Paetzold, J.C., et al.: Machine learning analysis of whole mouse brain vasculature. Nat. Methods 17(4), 442–449 (2020)

    Article  Google Scholar 

  23. Wild, C.P., Weiderpass, E., Stewart, B.W.: World Cancer Report 2020. International Agency for Research on Cancer, Lyon, France (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alina Dima .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1893 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dima, A. et al. (2021). Segmentation of Peripancreatic Arteries in Multispectral Computed Tomography Imaging. In: Lian, C., Cao, X., Rekik, I., Xu, X., Yan, P. (eds) Machine Learning in Medical Imaging. MLMI 2021. Lecture Notes in Computer Science(), vol 12966. Springer, Cham. https://doi.org/10.1007/978-3-030-87589-3_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87589-3_61

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87588-6

  • Online ISBN: 978-3-030-87589-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics