Skip to main content

3D Temporomandibular Joint CBCT Image Segmentation via Multi-directional Resampling Ensemble Learning Network

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12966))

Included in the following conference series:

  • 3886 Accesses

Abstract

Accurate segmentation of temporomandibular joint (TMJ) from dental cone beam CT (CBCT) images is basis of for early diagnosis of TMJ-related diseases such as temporomandibular disorders (TMD). Fully convolutional networks (FCN) have achieved the state-of-the-art performance in medical image segmentation field. Both enough contextual information as well as rich spatial semantic information is required to obtain accurate segmentation, however, due to the limited GPU memories, high-resolution 3D volume cannot be directly input to these models. In this paper, we propose Multi-directional Resampling Ensemble Learning Network for 3D TMJ-CBCT image segmentation. This model extracts four semantic features from multi-directional resampled volumes, and then integrates features via ensemble learning network to achieve accurate segmentation. We implement extensive evaluations of the proposed method on a clinical images dataset, including images acquired from 89 patients. Our method achieves the Mean DSC value of 0.9814 ± 0.0054, the Mean Hausdorff Distance of 1.5711 ± 1.0252 mm, and the Mean Average Surface Distance of 0.0555 ± 0.0198 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Belikova, K., Rogov, O., Rybakov, A., et al.: Deep Negative Volume Segmentation. arXiv preprint arXiv:2006.12430 (2020)

  2. Geiger, D., Bae, W.C., Statum, S., Du, J., Chung, C.B.: Quantitative 3D ultrashort time-to-echo (UTE) MRI and micro-CT (μCT) evaluation of the temporomandibular joint (TMJ) condylar morphology. Skeletal Radiol. 43(1), 19–25 (2013). https://doi.org/10.1007/s00256-013-1738-9

    Article  Google Scholar 

  3. Bayram, M., et al.: Volumetric analysis of the mandibular condyle using cone beam computed tomography. Eur. J. Radiol. 81(8), 1812–1816 (2012). https://doi.org/10.1016/j.ejrad.2011.04.070

    Article  Google Scholar 

  4. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  5. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  6. Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: No New-Net. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 234–244. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_21

    Chapter  Google Scholar 

  7. Patel, T.R., et al.: Multi-resolution CNN for brain vessel segmentation from cerebrovascular images of intracranial aneurysm: a comparison of U-Net and DeepMedic. In: Medical Imaging 2020: Computer-Aided Diagnosis. 124142W, Texas (2020). https://doi.org/10.1117/12.2549761

  8. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  9. Chen, C., Liu, X., Ding, M., Zheng, J., Li, J.: 3D dilated multi-fiber network for real-time brain tumor segmentation in MRI. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 184–192. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_21

    Chapter  Google Scholar 

  10. Roth, H.R., et al.: Deep learning and its application to medical image segmentation. Med. Imaging Technol. 36(2), 63–71 (2018). https://doi.org/10.11409/mit.36.63

  11. Wang, B., Qiu, S., He, H.: Dual encoding U-Net for retinal vessel segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 84–92. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_10

    Chapter  Google Scholar 

  12. Wang, G., Li, W., Ourselin, S., Vercauteren, T.: Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 178–190. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_16

    Chapter  Google Scholar 

  13. Wang, Y., Zhou, Y., Shen, W., Park, S., Fishman, E.K., Yuille, A.L.: Abdominal multi-organ segmentation with organ-attention networks and statistical fusion. Med. Image Anal. 55, 88–102 (2019). https://doi.org/10.1016/j.media.2019.04.005

    Article  Google Scholar 

  14. Kamnitsas, K., et al.: Ensembles of multiple models and architectures for robust brain tumour segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 450–462. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_38

    Chapter  Google Scholar 

  15. Sinha, A., Dolz, J.: Multi-scale self-guided attention for medical image segmentation. IEEE J. Biomed. Health Inf. 25(1), 121–130 (2019). https://ieeexplore.ieee.org/document/9066969

  16. Li, X., Zhong, Z., Wu, J., et al.: Expectation-maximization attention networks for semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9167–9176 (2019)

    Google Scholar 

  17. Zhang, K., Li, J., Ma, R., Li, G.: An end-to-end segmentation network for the temporomandibular joints CBCT image based on 3D U-Net. In: Proceedings of the 2020 13th International Congress on Image and Signal Processing, pp. 664–668 (2020)

    Google Scholar 

  18. Fang, C., Li, G., Pan, C., Li, Y., Yu, Y.: Globally guided progressive fusion network for 3D pancreas segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 210–218. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_24

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities No. 2021JBM003 and the National Natural Science Foundation of China with Project No. 81671034.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jupeng Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, K., Li, J., Ma, R., Li, G. (2021). 3D Temporomandibular Joint CBCT Image Segmentation via Multi-directional Resampling Ensemble Learning Network. In: Lian, C., Cao, X., Rekik, I., Xu, X., Yan, P. (eds) Machine Learning in Medical Imaging. MLMI 2021. Lecture Notes in Computer Science(), vol 12966. Springer, Cham. https://doi.org/10.1007/978-3-030-87589-3_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87589-3_65

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87588-6

  • Online ISBN: 978-3-030-87589-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics