Abstract
Surface reconstruction from volumetric T1-weighted and T2-weighted images is a time-consuming multi-step process that often involves careful parameter fine-tuning, hindering a more wide-spread utilization of surface-based analysis particularly in large-scale studies. In this work, we propose a fast surface reconstruction method that is based on directly learning a continuous-valued signed distance function (SDF) as implicit surface representation. This continuous representation implicitly encodes the boundary of the surface as the zero isosurface. Given the predicted SDF, the target 3D surface is reconstructed by applying the marching cubes algorithm. Our implicit reconstruction method concurrently predicts the surfaces of the brain parenchyma, the white matter and pial surfaces, the subcortical structures, and the ventricles. Evaluation based on data from the Human Connectome Project indicates that surface reconstruction of a total of 22 cortical and subcortical structures can be completed in less than 20 min.
This work was supported in part by United States National Institutes of Health (NIH) grants EB008374 and EB006733.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
References
Bagautdinov, T., Wu, C., Saragih, J., Fua, P., Sheikh, Y.: Modeling facial geometry using compositional VAEs. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018). https://doi.org/10.1109/cvpr.2018.00408
Bazin, P.L., Pham, D.L.: Topology correction of segmented medical images using a fast marching algorithm. Comput. Methods Program. Biomed. 88(2), 182–190 (2007). https://doi.org/10.1016/j.cmpb.2007.08.006
Ben-Hamu, H., Maron, H., Kezurer, I., Avineri, G., Lipman, Y.: Multi-chart generative surface modeling. ACM Trans. Graph. 37(6), 1–15 (2019). https://doi.org/10.1145/3272127.3275052
Charles, R.Q., Su, H., Kaichun, M., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017). https://doi.org/10.1109/cvpr.2017.16
Chen, Z., Zhang, H.: Learning implicit fields for generative shape modeling. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5939–5948 (2019)
Choy, C.B., Xu, D., Gwak, J.Y., Chen, K., Savarese, S.: 3D-R2N2: a unified approach for single and multi-view 3D object reconstruction. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 628–644. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_38
Cruz, R.S., Lebrat, L., Bourgeat, P., Fookes, C., Fripp, J., Salvado, O.: DeepCSR: a 3D deep learning approach for cortical surface reconstruction. arXiv preprint arXiv:2010.11423 (2020)
Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Implicit fairing of irregular meshes using diffusion and curvature flow (1999)
Dubuisson, M.P., Jain, A.K.: A modified hausdorff distance for object matching. In: Proceedings of the International Conference on Pattern Recognition (ICPR), vol. 1, pp. 566–568 (1994)
Fischl, B.: FreeSurfer. NeuroImage 62(2), 774–781 (2012). https://doi.org/10.1016/j.neuroimage.2012.01.021
Glasser, M.F., et al.: The minimal preprocessing pipelines for the Human Connectome Project. NeuroImage 80, 105–124 (2013). https://doi.org/10.1016/j.neuroimage.2013.04.127
Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., Smith, S.M.: FSL. NeuroImage 62(2), 782–790 (2012). https://doi.org/10.1016/j.neuroimage.2011.09.015
Kuperberg, G.R., et al.: Regionally localized thinning of the cerebral cortex in schizophrenia. Arch. Gen. Psychiatry 60(9), 878–888 (2003). https://doi.org/10.1001/archpsyc.60.9.878
Li, G., Nie, J., Wu, G., Wang, Y., Shen, D., Initiative, A.D.N., et al.: Consistent reconstruction of cortical surfaces from longitudinal brain MR images. Neuroimage 59(4), 3805–3820 (2012)
Li, H., Wei, D., Cao, S., Ma, K., Wang, L., Zheng, Y.: Superpixel-guided label softening for medical image segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 227–237. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_23
Litany, O., Bronstein, A., Bronstein, M., Makadia, A.: Deformable shape completion with graph convolutional autoencoders. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018). https://doi.org/10.1109/cvpr.2018.00202
Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. ACM SIGGRAPH Comput. Graph. 21(4), 163–169 (1987)
Maron, H.: Convolutional neural networks on surfaces via seamless toric covers. ACM Trans. Graph. 36(4), 1–10 (2017). https://doi.org/10.1145/3072959.3073616
Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: learning 3D reconstruction in function space. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4460–4470 (2019)
Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: DeepSDF: learning continuous signed distance functions for shape representation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 165–174 (2019)
Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30, pp. 5099–5108 (2017)
Sinha, A., Bai, J., Ramani, K.: Deep learning 3D shape surfaces using geometry images. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 223–240. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_14
Tang, X., et al.: Regional subcortical shape analysis in premanifest huntington’s disease. Hum. Brain Mapp. 40(5), 1419–1433 (2019). https://doi.org/10.1002/hbm.24456
Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3D ShapeNets: a deep representation for volumetric shapes. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015). https://doi.org/10.1109/cvpr.2015.7298801
Xu, Q., Wang, W., Ceylan, D., Mech, R., Neumann, U.: DISN: deep implicit surface network for high-quality single-view 3D reconstruction. In: Advances in Neural Information Processing Systems, pp. 492–502 (2019)
Yang, Y., Feng, C., Shen, Y., Tian, D.: FoldingNet: point cloud auto-encoder via deep grid deformation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018). https://doi.org/10.1109/cvpr.2018.00029
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Hong, Y., Ahmad, S., Wu, Y., Liu, S., Yap, PT. (2021). Vox2Surf: Implicit Surface Reconstruction from Volumetric Data. In: Lian, C., Cao, X., Rekik, I., Xu, X., Yan, P. (eds) Machine Learning in Medical Imaging. MLMI 2021. Lecture Notes in Computer Science(), vol 12966. Springer, Cham. https://doi.org/10.1007/978-3-030-87589-3_66
Download citation
DOI: https://doi.org/10.1007/978-3-030-87589-3_66
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-87588-6
Online ISBN: 978-3-030-87589-3
eBook Packages: Computer ScienceComputer Science (R0)