Skip to main content

Vox2Surf: Implicit Surface Reconstruction from Volumetric Data

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12966))

Included in the following conference series:

  • 4690 Accesses

Abstract

Surface reconstruction from volumetric T1-weighted and T2-weighted images is a time-consuming multi-step process that often involves careful parameter fine-tuning, hindering a more wide-spread utilization of surface-based analysis particularly in large-scale studies. In this work, we propose a fast surface reconstruction method that is based on directly learning a continuous-valued signed distance function (SDF) as implicit surface representation. This continuous representation implicitly encodes the boundary of the surface as the zero isosurface. Given the predicted SDF, the target 3D surface is reconstructed by applying the marching cubes algorithm. Our implicit reconstruction method concurrently predicts the surfaces of the brain parenchyma, the white matter and pial surfaces, the subcortical structures, and the ventricles. Evaluation based on data from the Human Connectome Project indicates that surface reconstruction of a total of 22 cortical and subcortical structures can be completed in less than 20 min.

This work was supported in part by United States National Institutes of Health (NIH) grants EB008374 and EB006733.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Available at https://www.humanconnectome.org/software/connectome-workbench.

References

  1. Bagautdinov, T., Wu, C., Saragih, J., Fua, P., Sheikh, Y.: Modeling facial geometry using compositional VAEs. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018). https://doi.org/10.1109/cvpr.2018.00408

  2. Bazin, P.L., Pham, D.L.: Topology correction of segmented medical images using a fast marching algorithm. Comput. Methods Program. Biomed. 88(2), 182–190 (2007). https://doi.org/10.1016/j.cmpb.2007.08.006

  3. Ben-Hamu, H., Maron, H., Kezurer, I., Avineri, G., Lipman, Y.: Multi-chart generative surface modeling. ACM Trans. Graph. 37(6), 1–15 (2019). https://doi.org/10.1145/3272127.3275052

    Article  Google Scholar 

  4. Charles, R.Q., Su, H., Kaichun, M., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017). https://doi.org/10.1109/cvpr.2017.16

  5. Chen, Z., Zhang, H.: Learning implicit fields for generative shape modeling. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5939–5948 (2019)

    Google Scholar 

  6. Choy, C.B., Xu, D., Gwak, J.Y., Chen, K., Savarese, S.: 3D-R2N2: a unified approach for single and multi-view 3D object reconstruction. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 628–644. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_38

    Chapter  Google Scholar 

  7. Cruz, R.S., Lebrat, L., Bourgeat, P., Fookes, C., Fripp, J., Salvado, O.: DeepCSR: a 3D deep learning approach for cortical surface reconstruction. arXiv preprint arXiv:2010.11423 (2020)

  8. Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Implicit fairing of irregular meshes using diffusion and curvature flow (1999)

    Google Scholar 

  9. Dubuisson, M.P., Jain, A.K.: A modified hausdorff distance for object matching. In: Proceedings of the International Conference on Pattern Recognition (ICPR), vol. 1, pp. 566–568 (1994)

    Google Scholar 

  10. Fischl, B.: FreeSurfer. NeuroImage 62(2), 774–781 (2012). https://doi.org/10.1016/j.neuroimage.2012.01.021

    Article  Google Scholar 

  11. Glasser, M.F., et al.: The minimal preprocessing pipelines for the Human Connectome Project. NeuroImage 80, 105–124 (2013). https://doi.org/10.1016/j.neuroimage.2013.04.127

    Article  Google Scholar 

  12. Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., Smith, S.M.: FSL. NeuroImage 62(2), 782–790 (2012). https://doi.org/10.1016/j.neuroimage.2011.09.015

    Article  Google Scholar 

  13. Kuperberg, G.R., et al.: Regionally localized thinning of the cerebral cortex in schizophrenia. Arch. Gen. Psychiatry 60(9), 878–888 (2003). https://doi.org/10.1001/archpsyc.60.9.878

  14. Li, G., Nie, J., Wu, G., Wang, Y., Shen, D., Initiative, A.D.N., et al.: Consistent reconstruction of cortical surfaces from longitudinal brain MR images. Neuroimage 59(4), 3805–3820 (2012)

    Article  Google Scholar 

  15. Li, H., Wei, D., Cao, S., Ma, K., Wang, L., Zheng, Y.: Superpixel-guided label softening for medical image segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 227–237. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_23

    Chapter  Google Scholar 

  16. Litany, O., Bronstein, A., Bronstein, M., Makadia, A.: Deformable shape completion with graph convolutional autoencoders. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018). https://doi.org/10.1109/cvpr.2018.00202

  17. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. ACM SIGGRAPH Comput. Graph. 21(4), 163–169 (1987)

    Article  Google Scholar 

  18. Maron, H.: Convolutional neural networks on surfaces via seamless toric covers. ACM Trans. Graph. 36(4), 1–10 (2017). https://doi.org/10.1145/3072959.3073616

    Article  Google Scholar 

  19. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: learning 3D reconstruction in function space. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4460–4470 (2019)

    Google Scholar 

  20. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: DeepSDF: learning continuous signed distance functions for shape representation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 165–174 (2019)

    Google Scholar 

  21. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30, pp. 5099–5108 (2017)

    Google Scholar 

  22. Sinha, A., Bai, J., Ramani, K.: Deep learning 3D shape surfaces using geometry images. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 223–240. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_14

    Chapter  Google Scholar 

  23. Tang, X., et al.: Regional subcortical shape analysis in premanifest huntington’s disease. Hum. Brain Mapp. 40(5), 1419–1433 (2019). https://doi.org/10.1002/hbm.24456

    Article  Google Scholar 

  24. Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3D ShapeNets: a deep representation for volumetric shapes. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015). https://doi.org/10.1109/cvpr.2015.7298801

  25. Xu, Q., Wang, W., Ceylan, D., Mech, R., Neumann, U.: DISN: deep implicit surface network for high-quality single-view 3D reconstruction. In: Advances in Neural Information Processing Systems, pp. 492–502 (2019)

    Google Scholar 

  26. Yang, Y., Feng, C., Shen, Y., Tian, D.: FoldingNet: point cloud auto-encoder via deep grid deformation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018). https://doi.org/10.1109/cvpr.2018.00029

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pew-Thian Yap .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hong, Y., Ahmad, S., Wu, Y., Liu, S., Yap, PT. (2021). Vox2Surf: Implicit Surface Reconstruction from Volumetric Data. In: Lian, C., Cao, X., Rekik, I., Xu, X., Yan, P. (eds) Machine Learning in Medical Imaging. MLMI 2021. Lecture Notes in Computer Science(), vol 12966. Springer, Cham. https://doi.org/10.1007/978-3-030-87589-3_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87589-3_66

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87588-6

  • Online ISBN: 978-3-030-87589-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics