Skip to main content

Extracting Sequential Features from Dynamic Connectivity Network with rs-fMRI Data for AD Classification

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12966))

Included in the following conference series:

  • 4719 Accesses

Abstract

Dynamic functional connectivity (dFC) networks based on resting-state functional magnetic resonance imaging (rs-fMRI) can help us understand the function of brain better, and have been applied to brain disease identification, such as Alzheimer’s disease (AD) and its early stages (i.e., mild cognitive impairment, MCI). Deep learning (e.g., convolutional neural network, CNN) methods have been recently applied to dynamic FC network analysis, and achieve good performance compared to traditional machine learning methods. Existing studies usually ignore sequence information of temporal features from dynamic FC networks. To this end, in this paper, we propose a recurrent neural network-based learning framework to extract sequential features from dynamic FC networks with rs-fMRI data for brain disease classification. Experimental results on 174 subjects with baseline resting-state functional MRI (rs-fMRI) data from ADNI demonstrate the effectiveness of our proposed method in binary and multi-category classification tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Change history

  • 21 September 2021

    In an older version of papers 68 and 69, the CERNET Innovation Project (NGII20190621) had been omitted from the Acknowledgment section. This has been corrected.

Notes

  1. 1.

    http://adni.loni.usc.edu.

References

  1. Fan, L., et al.: New insights into the pathogenesis of Alzheimer’s disease. Front. Neurol. 10, 1312 (2020)

    Article  Google Scholar 

  2. Reiman, E.M., Langbaum, J.B., Tariot, P.N.: Alzheimer’s prevention initiative: a proposal to evaluate presymptomatic treatments as quickly as possible. Biomark. Med. 4(1), 3–14 (2010). PMID: 20383319

    Article  Google Scholar 

  3. Liu, M., Zhang, J., Adeli, E., Shen, D.: Landmark-based deep multi-instance learning for brain disease diagnosis. Med. Image Anal. 43, 157–168 (2018)

    Article  Google Scholar 

  4. Zhang, L., Wang, M., Liu, M., Zhang, D.: A survey on deep learning for neuroimaging-based brain disorder analysis. Front. Neurosci. 14 (2020)

    Google Scholar 

  5. Lee, M., Smyser, C., Shimony, J.: Resting-state fMRI: a review of methods and clinical applications. Am. J. Neuroradiol. 34(10), 1866–1872 (2013)

    Article  Google Scholar 

  6. Jie, B., Zhang, D., Gao, W., Wang, Q., Wee, C.Y., Shen, D.: Integration of network topological and connectivity properties for neuroimaging classification. IEEE Trans. Biomed. Eng. 61(2), 576–589 (2014)

    Article  Google Scholar 

  7. Shen, H., Wang, L., Liu, Y., Hu, D.: Discriminative analysis of resting-state functional connectivity patterns of schizophrenia using low dimensional embedding of fMRI. NeuroImage 49(4), 3110–3121 (2010)

    Article  Google Scholar 

  8. Jie, B., Liu, M., Zhang, D., Shen, D.: Sub-network kernels for measuring similarity of brain connectivity networks in disease diagnosis. IEEE Trans. Image Process. 27(5), 2340–2353 (2018)

    Article  MathSciNet  Google Scholar 

  9. Wang, M., Lian, C., Yao, D., Zhang, D., Liu, M., Shen, D.: Spatial-temporal dependency modeling and network hub detection for functional MRI analysis via convolutional-recurrent network. IEEE Trans. Biomed. Eng. 67(8), 2241–2252 (2020)

    Article  Google Scholar 

  10. Wang, M., Zhang, D., Huang, J., Yap, P.T., Shen, D., Liu, M.: Identifying autism spectrum disorder with multi-site fMRI via low-rank domain adaptation. IEEE Trans. Med. Imaging 39(3), 644–655 (2019)

    Article  Google Scholar 

  11. Sporns, O.: The human connectome: a complex network. Ann. N. Y. Acad. Sci. 1224(1), 109–125 (2011)

    Article  Google Scholar 

  12. Hutchison, R.M., et al.: Dynamic functional connectivity: promise, issues, and interpretations. NeuroImage 80, 360–378 (2013)

    Article  Google Scholar 

  13. Zhang, J., et al.: Neural, electrophysiological and anatomical basis of brain-network variability and its characteristic changes in mental disorders. Brain 139(8), 2307–2321 (2016)

    Article  Google Scholar 

  14. Kudela, M., Harezlak, J., Lindquist, M.A.: Assessing uncertainty in dynamic functional connectivity. NeuroImage 149, 165–177 (2017)

    Article  Google Scholar 

  15. Damaraju, E., et al.: Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia. NeuroImage: Clin. 5, 298–308 (2014)

    Article  Google Scholar 

  16. Jie, B., Liu, M., Lian, C., Shi, F., Shen, D.: Designing weighted correlation kernels in convolutional neural networks for functional connectivity based brain disease diagnosis. Med. Image Anal. 63, 1–14 (2020)

    Article  Google Scholar 

  17. Kawahara, J., et al.: BrainNetCNN: Convolutional neural networks for brain networks. Towards predicting neurodevelopment. NeuroImage 146, 1038–1049 (2016)

    Article  Google Scholar 

  18. Tzourio-Mazoyer, N., et al.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15(1), 273–289 (2002)

    Article  Google Scholar 

  19. Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Diffeomorphic demons: efficient non-parametric image registration. NeuroImage 45(1), S61–S72 (2009)

    Article  Google Scholar 

  20. Jie, B., Liu, M., Shen, D.: Integration of temporal and spatial properties of dynamic connectivity networks for automatic diagnosis of brain disease. Med. Image Anal. 47, 81–94 (2018)

    Article  Google Scholar 

  21. Zhang, D., Shen, D.: Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease. NeuroImage 59(2), 895–907 (2012)

    Article  MathSciNet  Google Scholar 

  22. Bokde, A.L.W., et al.: Functional connectivity of the fusiform gyrus during a face-matching task in subjects with mild cognitive impairment. Brain 129(5), 1113–1124 (2006)

    Article  Google Scholar 

  23. Thomann, P.A., Schläfer, C., Seidl, U., Santos, V.D., Essig, M., Schröder, J.: The cerebellum in mild cognitive impairment and Alzheimer’s disease - a structural MRI study. J. Psychiatr. Res. 42(14), 1198–1202 (2008)

    Article  Google Scholar 

  24. Suk, H.I., Wee, C.Y., Lee, S.W., Shen, D.: Supervised discriminative group sparse representation for mild cognitive impairment diagnosis. Neuroinformatics 13, 277–295 (2015)

    Article  Google Scholar 

Download references

Acknowledgment

K. Lin, B. Jie, P. Dong, X. Ding and W. Bian were supported in part by NSFC (Nos. 61976006, 61573023, 61902003), Anhui-NSFC (Nos. 1708085MF145, 1808085MF171), AHNU-FOYHE (No. gxyqZD2017010) and CERNET Innovation Project (NGII20190621).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biao Jie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, K., Jie, B., Dong, P., Ding, X., Bian, W., Liu, M. (2021). Extracting Sequential Features from Dynamic Connectivity Network with rs-fMRI Data for AD Classification. In: Lian, C., Cao, X., Rekik, I., Xu, X., Yan, P. (eds) Machine Learning in Medical Imaging. MLMI 2021. Lecture Notes in Computer Science(), vol 12966. Springer, Cham. https://doi.org/10.1007/978-3-030-87589-3_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87589-3_68

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87588-6

  • Online ISBN: 978-3-030-87589-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics