Skip to main content

SequenceGAN: Generating Fundus Fluorescence Angiography Sequences from Structure Fundus Image

  • Conference paper
  • First Online:
Simulation and Synthesis in Medical Imaging (SASHIMI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12965))

Included in the following conference series:

Abstract

Fundus fluorescein angiography (FA) is an indispensable procedure that can investigate the integrity of retina vasculature. Fluorescein angiograms progress through five phases: pre-arterial, arterial, arteriovenous, venous, and late, and each phase could be an important diagnostic basis for retina-related disease. However, the FA imaging technique may provide risks of harm to the patients. To help physicians reduce the potential risks of diagnosis, we proposed “SequenceGAN”, a novel sequential generative adversarial network that aims to generate FA sequences of critical phases from a structure fundus image. Moreover, a feature-space loss is applied to ensure the generated FA sequences with a better visual effect. The proposed method was qualitatively and quantitatively compared with existing FA image generation methods and image translation methods. The experimental results indicate that the proposed model has better performance on the generation of retina vascular, leakage structures, and characteristics of each angiogram phase, and thus indicates potential value for application in clinical diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Li, W.: Generating fundus fluorescence angiography images from structure fundus images using generative adversarial networks. Proc. Mach. Learn. Res. 121, 1–16 (2020)

    Google Scholar 

  2. O’Toole, L.: Fluorescein and ICG angiograms: still a gold standard. Acta Ophthalmol. Scand. 85 (2007)

    Google Scholar 

  3. Dolan, B.J.: Fluorescein and ICG angiography textbook and atlas. Optom. Vis. Sci. 76, 520 (1999)

    Article  Google Scholar 

  4. Varma, D.D., Cugati, S., Lee, A.W., Chen, C.S.: A review of central retinal artery occlusion: clinical presentation and management. Eye 27, 688–697 (2013)

    Article  Google Scholar 

  5. Wong, T.Y., Scott, I.U.: Retinal-vein occlusion. N. Engl. J. Med. 363, 2135–2144 (2010)

    Article  Google Scholar 

  6. Yannuzzi, L.A., et al.: Fluorescein angiography complication survey. Ophthalmology 93, 611–617 (1986)

    Article  Google Scholar 

  7. Musa, F., Muen, W.J., Hancock, R.: Adverse effects of fluorescein angiography in hypertensive and elderly patients. Acta Ophthalmol. Scand. 84, 740–742 (2006)

    Article  Google Scholar 

  8. Isola, P.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. CVPR (2017)

    Google Scholar 

  9. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision (2017)

    Google Scholar 

  10. Zhu, J.: Toward multimodal image-to-image translation. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp.465–476 (2017)

    Google Scholar 

  11. Choi, Y., Choi, M., Kim, M., Ha, J.W., Kim, S., Choo, J.: StarGAN: unified generative adversarial networks for multi-domain image-to-image translation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  12. Schiffers, F., Yu, Z., Arguin, S., Maier, A., Ren, Q.: Synthetic fundus fluorescein angiography using deep neural networks. In: Maier, A., Deserno, T., Handels, H., Maier-Hein, K., Palm, C., Tolxdorff, T. (eds.) Bildverarbeitung für die Medizin 2018. Informatik aktuell, pp. 234–238. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-662-56537-7_64

    Chapter  Google Scholar 

  13. Hervella, Á.S.: Deep multimodal reconstruction of retinal images using paired or unpaired data. In: International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2019)

    Google Scholar 

  14. Li, K., Yu, L., Wang, S., Heng, P.-A.: Unsupervised retina image synthesis via disentangled representation learning. In: Burgos, N., Gooya, A., Svoboda, D. (eds.) SASHIMI 2019. LNCS, vol. 11827, pp. 32–41. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32778-1_4

    Chapter  Google Scholar 

  15. Hervella, Á.S., Rouco, J., Novo, J., Ortega, M.: Retinal image understanding emerges from self-supervised multimodal reconstruction. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 321–328. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_37

    Chapter  Google Scholar 

  16. Kamran, S.A., Fariha Hossain, K., Tavakkoli, A., Zuckerbrod, S., Baker, S.A., Sanders, K.M.: Fundus2Angio: a conditional GAN architecture for generating fluorescein angiography images from retinal fundus photography. In: Bebis, G., et al. (eds.) ISVC 2020. LNCS, vol. 12510, pp. 125–138. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64559-5_10

    Chapter  Google Scholar 

  17. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  18. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)

    Google Scholar 

Download references

Acknowledgement

This work is supported by the National Key Research and Development Program of China (2016YFF0102002) and the National Natural Science Foundation of China (61605210, 62075235).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, W. et al. (2021). SequenceGAN: Generating Fundus Fluorescence Angiography Sequences from Structure Fundus Image. In: Svoboda, D., Burgos, N., Wolterink, J.M., Zhao, C. (eds) Simulation and Synthesis in Medical Imaging. SASHIMI 2021. Lecture Notes in Computer Science(), vol 12965. Springer, Cham. https://doi.org/10.1007/978-3-030-87592-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87592-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87591-6

  • Online ISBN: 978-3-030-87592-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics