Skip to main content

Liver Tumor Localization and Characterization from Multi-phase MR Volumes Using Key-Slice Prediction: A Physician-Inspired Approach

  • Conference paper
  • First Online:
Predictive Intelligence in Medicine (PRIME 2021)

Abstract

Using radiological scans to identify liver tumors is crucial for proper patient treatment. This is highly challenging, as top radiologists only achieve F1 scores of roughly \(80\%\) (hepatocellular carcinoma (HCC) vs. others) with only moderate inter-rater agreement, even when using multi-phase magnetic resonance (MR) imagery. Thus, there is great impetus for computer-aided diagnosis (CAD) solutions. A critical challenge is to robustly parse a 3D MR volume to localize diagnosable regions of interest (ROI), especially for edge cases. In this paper, we break down this problem using key-slice prediction (KSP), which emulates physician workflows by predicting the slice a physician would choose as “key” and then localizing the corresponding key ROIs. To achieve robustness, the KSP also uses curve-parsing and detection confidence re-weighting. We evaluate our approach on the largest multi-phase MR liver lesion test dataset to date (430 biopsy-confirmed patients). Experiments demonstrate that our KSP can localize diagnosable ROIs with high reliability: \(87\%\) patients have an average 3D overlap of \({\ge }40\%\) with the ground truth compared to only \(79\%\) using the best tested detector. When coupled with a classifier, we achieve an HCC vs. others F1 score of 0.801, providing a fully-automated CAD performance comparable to top human physicians.

B. Lai, Y. Wu and X. Bai—Equal contribution.

This work was done when X. Bai was an intern at Ping An Technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adcock, A., Rubin, D., Carlsson, G.: Classification of hepatic lesions using the matching metric. Comput. Vis. Image Underst. 121, 36–42 (2014)

    Article  Google Scholar 

  2. Aubé, C., et al.: EASL and AASLD recommendations for the diagnosis of HCC to the test of daily practice. Liver Int. 37(10), 1515–1525 (2017)

    Article  Google Scholar 

  3. Bilic, P., et al.: The liver tumor segmentation benchmark (LiTS) (2019)

    Google Scholar 

  4. Bosch, F.X., Ribes, J., Díaz, M., Cléries, R.: Primary liver cancer: worldwide incidence and trends. Gastroenterology 127(5), S5–S16 (2004)

    Article  Google Scholar 

  5. Cai, J., et al.: Lesion harvester: iteratively mining unlabeled lesions and hard-negative examples at scale. TMI (2020, accepted)

    Google Scholar 

  6. Chen, X., et al.: A cascade attention network for liver lesion classification in weakly-labeled multi-phase CT images. In: Wang, Q., et al. (eds.) DART/MIL3ID -2019. LNCS, vol. 11795, pp. 129–138. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33391-1_15

    Chapter  Google Scholar 

  7. Diamant, I., et al.: Improved patch-based automated liver lesion classification by separate analysis of the interior and boundary regions. JBHI 20(6), 1585–1594 (2015)

    Google Scholar 

  8. Eisenhauer, E., Therasse, P., Bogaerts, J., et al.: New response evaluation criteria in solid tumours: revised RECIST guideline (v1.1). EJC 45(2), 228–247 (2009)

    Google Scholar 

  9. Fowler, K.J., et al.: Interreader reliability of LI-RADS version 2014 algorithm and imaging features for diagnosis of hepatocellular carcinoma: a large international multireader study. Radiology 286(1), 173–185 (2018)

    Article  Google Scholar 

  10. Freeman, R.B., et al.: Optimizing staging for hepatocellular carcinoma before liver transplantation: a retrospective analysis of the UNOS/OPTN database. Liver Transpl. 12(10), 1504–1511 (2006)

    Article  Google Scholar 

  11. Galloway, M.M.: Texture analysis using gray level run lengths. Comput. Graph. Image Process. 4(2), 172–179 (1975)

    Article  Google Scholar 

  12. Goyal, P., et al.: Accurate, large minibatch SGD: training ImageNet in 1 hour. arXiv abs/1706.02677 (2017)

    Google Scholar 

  13. Grant, A., Neuberger, J.: Guidelines on the use of liver biopsy in clinical practice. Gut 45(Suppl. 4), IV1–IV11 (1999)

    Google Scholar 

  14. Haralick, R.M., Shanmugam, K., Dinstein, I.H.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 610–621 (1973)

    Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  16. Heinrich, M.P., Jenkinson, M., Brady, M., Schnabel, J.A.: MRF-based deformable registration and ventilation estimation of lung CT. TMI 32(7), 1239–1248 (2013)

    Google Scholar 

  17. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: CVPR, pp. 4700–4708 (2017)

    Google Scholar 

  18. Huo, Y., et al.: Harvesting, detecting, and characterizing liver lesions from large-scale multi-phase CT data via deep dynamic texture learning. arXiv:2006.15691 (2020)

  19. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  20. Oliva, M.R., Saini, S.: Liver cancer imaging: role of CT, MRI, US and PET. Cancer Imaging 4(Spec No A), S42 (2004)

    Google Scholar 

  21. Sun, C., Wee, W.G.: Neighboring gray level dependence matrix for texture classification. Comput. Vis. Graph. Image Process. 23(3), 341–352 (1983)

    Article  Google Scholar 

  22. Thibault, G., et al.: Shape and texture indexes application to cell nuclei classification. Int. J. Pattern Recognit Artif Intell. 27(01), 1357002 (2013)

    Article  MathSciNet  Google Scholar 

  23. Van Griethuysen, J.J., et al.: Computational radiomics system to decode the radiographic phenotype. Can. Res. 77(21), e104–e107 (2017)

    Article  Google Scholar 

  24. Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.: ChestX-ray8: hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: CVPR, pp. 2097–2106 (2017)

    Google Scholar 

  25. Wu, J., Liu, A., Cui, J., Chen, A., Song, Q., Xie, L.: Radiomics-based classification of hepatocellular carcinoma and hepatic haemangioma on precontrast magnetic resonance images. BMC Med. Imaging 19(1), 23 (2019)

    Article  Google Scholar 

  26. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: CVPR, pp. 1492–1500 (2017)

    Google Scholar 

  27. Yan, K., Bagheri, M., Summers, R.M.: 3D context enhanced region-based convolutional neural network for end-to-end lesion detection. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 511–519. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_58

    Chapter  Google Scholar 

  28. Yan, K., Lu, L., Summers, R.M.: Unsupervised body part regression via spatially self-ordering convolutional neural networks. In: ISBI, pp. 1022–1025. IEEE (2018)

    Google Scholar 

  29. Yang, W., Lu, Z., Yu, M., Huang, M., Feng, Q., Chen, W.: Content-based retrieval of focal liver lesions using bag-of-visual-words representations of single-and multiphase contrast-enhanced ct images. JDI 25(6), 708–719 (2012)

    Google Scholar 

  30. Zhang, H., Xue, J., Dana, K.: Deep ten: texture encoding network. In: CVPR, pp. 708–717 (2017)

    Google Scholar 

  31. Zhang, S., Chi, C., Yao, Y., Lei, Z., Li, S.Z.: Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection. In: CVPR, pp. 9759–9768 (2020)

    Google Scholar 

  32. Zhen, S., et al.: Deep learning for accurate diagnosis of liver tumor based on magnetic resonance imaging and clinical data. Front. Oncol. 10, 680 (2020)

    Google Scholar 

  33. Zhou, X., Wang, D., Krähenbühl, P.: Objects as points. arXiv:1904.07850 (2019)

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lai, B. et al. (2021). Liver Tumor Localization and Characterization from Multi-phase MR Volumes Using Key-Slice Prediction: A Physician-Inspired Approach. In: Rekik, I., Adeli, E., Park, S.H., Schnabel, J. (eds) Predictive Intelligence in Medicine. PRIME 2021. Lecture Notes in Computer Science(), vol 12928. Springer, Cham. https://doi.org/10.1007/978-3-030-87602-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87602-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87601-2

  • Online ISBN: 978-3-030-87602-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics