Skip to main content

Fast Tractography Streamline Search

  • Conference paper
  • First Online:
Computational Diffusion MRI (CDMRI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 13006))

Included in the following conference series:

  • 1048 Accesses

Abstract

In this work, a new hierarchical approach is proposed to efficiently search for similar tractography streamlines. The proposed streamline representation enables the use of binary search trees to increase the tractography clustering speed without reducing its accuracy. This hierarchical framework offers an upper bound and a lower bound for the point-wise distance between two streamlines, which guarantees the validity of a proximity search. The resulting approach can be used for fast and accurate clustering of tractography streamlines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12(1), 26–41 (2008)

    Google Scholar 

  2. Behrens, T.E., Sotiropoulos, S.N., Jbabdi, S.: MR diffusion tractography. In: Diffusion MRI, pp. 429–451. Elsevier (2014)

    Google Scholar 

  3. Bertò, G., et al.: Classifyber, a robust streamline-based linear classifier for white matter bundle segmentation. NeuroImage 224, 117402 (2021)

    Google Scholar 

  4. Catani, M., Howard, R.J., Pajevic, S., Jones, D.K.: Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage 17(1), 77–94 (2002)

    Google Scholar 

  5. Chan, F.P., Fu, A.C., Yu, C.: HAAR wavelets for efficient similarity search of time-series: with and without time warping. IEEE Trans. knowl. Data Eng. 15(3), 686–705 (2003)

    Google Scholar 

  6. Cohn, D.L.: Measure Theory. Springer, Cham (2013)

    Google Scholar 

  7. Côté, M.A., Girard, G., Boré, A., Garyfallidis, E., Houde, J.C., Descoteaux, M.: Tractometer: towards validation of tractography pipelines. Med. Image Anal. 17(7), 844–857 (2013)

    Google Scholar 

  8. Descoteaux, M.: High angular resolution diffusion imaging (HARDI). In: Wiley Encyclopedia of Electrical and Electronics Engineering, pp. 1–25 (2015)

    Google Scholar 

  9. Fu, T.: A review on time series data mining. Eng. Appl. Artif. Intell. 24(1), 164–181 (2011)

    Google Scholar 

  10. Garyfallidis, E., et al.: Dipy, a library for the analysis of diffusion MRI data. Front. Neuroinf. 21, 8 (2014)

    Google Scholar 

  11. Garyfallidis, E., Brett, M., Correia, M.M., Williams, G.B., Nimmo-Smith, I.: Quickbundles, a method for tractography simplification. Front. Neurosci. 6, 175 (2012)

    Google Scholar 

  12. Garyfallidis, E., Côté, M.A., Rheault, F., Descoteaux, M.: Quickbundlesx: sequential clustering of millions of streamlines in multiple levels of detail at record execution time. In: 24th International Society of Magnetic Resonance in Medicine (ISMRM) (2016)

    Google Scholar 

  13. Garyfallidis, E., et al.: Recognition of white matter bundles using local and global streamline-based registration and clustering. NeuroImage 170, 283–295 (2018)

    Google Scholar 

  14. Girard, G., Whittingstall, K., Deriche, R., Descoteaux, M.: Towards quantitative connectivity analysis: reducing tractography biases. Neuroimage 98, 266–278 (2014)

    Google Scholar 

  15. Guevara, P., et al.: Robust clustering of massive tractography datasets. Neuroimage 54(3), 1975–1993 (2011)

    Google Scholar 

  16. Hershberger, J.E., Snoeyink, J.: Speeding up the Douglas-Peucker line-simplification algorithm. University of British Columbia, Department of Computer Science Vancouver, BC (1992)

    Google Scholar 

  17. Jbabdi, S., Johansen-Berg, H.: Tractography: where do we go from here? Brain Connect. 1(3), 169–183 (2011)

    Google Scholar 

  18. Jones, D.K.: Studying connections in the living human brain with diffusion MRI. Cortex 44(8), 936–952 (2008)

    Google Scholar 

  19. Keogh, E., Chakrabarti, K., Pazzani, M., Mehrotra, S.: Dimensionality reduction for fast similarity search in large time series databases. Knowl. Inf. Syst. 3(3), 263–286 (2001)

    Google Scholar 

  20. Kotsakos, D., Trajcevski, G., Gunopulos, D., Aggarwal, C.C.: Time-series data clustering. (2013)

    Google Scholar 

  21. Legarreta, J.H., et al.: Tractography filtering using autoencoders (2020). arXiv preprint: arXiv:2010.04007

  22. Liao, T.W.: Clustering of time series dataa survey. Pattern Recogn. 38(11), 1857–1874 (2005)

    Google Scholar 

  23. Marimont, R., Shapiro, M.: Nearest neighbor searches and the curse of dimensionality. IMA J. Appl. Math. 24(1), 59–70 (1979)

    Google Scholar 

  24. Olivetti, E., Berto, G., Gori, P., Sharmin, N., Avesani, P.: Comparison of distances for supervised segmentation of white matter tractography. In: 2017 International Workshop on Pattern Recognition in Neuroimaging (PRNI), pp. 1–4. IEEE (2017)

    Google Scholar 

  25. Olivetti, E., Nguyen, T.B., Garyfallidis, E.: The approximation of the dissimilarity projection. In: 2012 Second International Workshop on Pattern Recognition in NeuroImaging, pp. 85–88. IEEE (2012)

    Google Scholar 

  26. Pestov, V.: Is the k-NN classifier in high dimensions affected by the curse of dimensionality? Comput. Math. Appl. 65(10), 1427–1437 (2013)

    Google Scholar 

  27. Presseau, C., Jodoin, P.M., Houde, J.C., Descoteaux, M.: A new compression format for fiber tracking datasets. NeuroImage 109, 73–83 (2015)

    Google Scholar 

  28. Rheault, F.: Analyse et reconstruction de faisceaux de la matière blanche. Computer Science. Université de Sherbrooke (2020)

    Google Scholar 

  29. Siless, V., Medina, S., Varoquaux, G., Thirion, B.: A comparison of metrics and algorithms for fiber clustering. In: 2013 International Workshop on Pattern Recognition in Neuroimaging, pp. 190–193. IEEE (2013)

    Google Scholar 

  30. Tournier, J.D., Calamante, F., Connelly, A.: Mrtrix: diffusion tractography in crossing fiber regions. Int. J. Imaging Syst. Technol. 22(1), 53–66 (2012)

    Google Scholar 

  31. Van Essen, D.C., et al.: The WU-MINN human connectome project: an overview. Neuroimage 80, 62–79 (2013)

    Google Scholar 

  32. Vázquez, A., et al.: Ffclust: fast fiber clustering for large tractography datasets for a detailed study of brain connectivity. NeuroImage 220, 117070 (2020)

    Google Scholar 

  33. Verleysen, M., François, D.: The curse of dimensionality in data mining and time series prediction. In: Cabestany, J., Prieto, A., Sandoval, F. (eds.) Computational Intelligence and Bioinspired Systems. IWANN 2005. Lecture Notes in Computer Science, 3512, 758–770. Springer, Berlin, Heidelberg (2005). https://doi.org/10.1007/11494669_93

  34. Virtanen, P., et al.: Scipy 1.0: fundamental algorithms for scientific computing in python. Nat. Methods 17(3), 261–272 (2020)

    Google Scholar 

  35. Wakana, S., et al.: Reproducibility of quantitative tractography methods applied to cerebral white matter. Neuroimage 36(3), 630–644 (2007)

    Google Scholar 

  36. Wang, X., Mueen, A., Ding, H., Trajcevski, G., Scheuermann, P., Keogh, E.: Experimental comparison of representation methods and distance measures for time series data. Data Mining Knowl. Disc. 26(2), 275–309 (2013)

    Google Scholar 

  37. Yeh, F.C., et al.: Population-averaged atlas of the macroscale human structural connectome and its network topology. NeuroImage 178, 57–68 (2018)

    Google Scholar 

  38. Yi, B.K., Faloutsos, C.: Fast time sequence indexing for arbitrary LP norms (2000)

    Google Scholar 

Download references

Acknowledgements

Acknowledgements to Gabrielle Grenier, Maxime Toussaint, Daniel Andrew, Alex Provost for their help and insights. Thanks to the Fonds de recherche du Québec - Nature et technologies (FRQNT), the Canadian Institutes of Health Research (MOP-111169) and the Natural Sciences and Engineering Research Council of Canada (NSERC) for research funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etienne St-Onge .

Editor information

Editors and Affiliations

Ethics declarations

Conflict of Interest

We have no conflict of interest to declare.

Appendices

A Sum of Norm Properties with Detailed Equations

Remark #1. The dist\(_{L^1}(U,W)\) is equivalent to computing the \(L^1\) distance between two \(m \times n\) dimensional points (\({{\mathbf {\vec {u}}}},{\mathbf {\vec {w}}} \in \mathbb {R}^{m \times n}\)).

$$\begin{aligned} \text {dist}_{L^1}(U,W)&= \sum _{i=1}^m || \mathbf{u}_i - \mathbf{w}_i ||_1 \\&=\sum _{i=1}^m \sum _{j=1}^n |u_{i,j}-w_{i,j}| \\&= || {{\mathbf {\vec {u}}}} - {\mathbf {\vec {w}}} ||_1 \end{aligned}$$

Remark #2. The \(L^1\) distance in n-dimensions can be used as an upper and a lower bound the \(L^2\) distance, from Hölder’s inequality (\(\mathbf{x} \in \mathbb {R}^n\)).

$$\begin{aligned} \left\| \mathbf{x} \right\| _p \le&\left\| \mathbf{x} \right\| _r \le n^{ (1/r - 1/p) } \left\| \mathbf{x} \right\| _p&0< r < p \\ \left\| \mathbf{x} \right\| _2 \le&\left\| \mathbf{x} \right\| _1 \le \sqrt{n} \left\| \mathbf{x} \right\| _2&r=1,\, p=2 \\ \frac{1}{\sqrt{n}}\left\| \mathbf{x} \right\| _2 \le&\frac{1}{\sqrt{n}}\left\| \mathbf{x} \right\| _1 \le \left\| \mathbf{x} \right\| _2&\text {division by } \frac{1}{\sqrt{n}} \end{aligned}$$

Remark #3. The distance between the mean position (\(\overline{\mathbf{u}} = \frac{1}{m} \sum _{i=1}^m \mathbf{u}_i\)) of two streamlines is always smaller or equal to the average point-wise distance. This can be obtained from \(L^p\)-norm properties (\(1 \le p < \infty \) \(\mathbf{x},\mathbf{y} \in \mathbb {R}^n \,,\; \lambda \in \mathbb {R}\)).

$$\begin{aligned} \left\| \mathbf{x} + \mathbf{y} \right\| _p \,\le&\, \left\| \mathbf{x} \right\| _p + \left\| \mathbf{y} \right\| _p&\text {triangle inequality} \end{aligned}$$
(11)
$$\begin{aligned} \left\| \lambda \mathbf{x} \right\| _p \,=&\, |\lambda | \, \left\| \mathbf{y} \right\| _p&\text {positive homogeneity} \end{aligned}$$
(12)

Using \(\mathbf{u}_i,\mathbf{w}_i \in \mathbb {R}^n ,\, i \in \{1, ..., m\}\), such that \(\mathbf{d}_i = \mathbf{u}_i - \mathbf{w}_i\)

$$\begin{aligned} \big \Vert \overline{\mathbf{u}} - \overline{\mathbf{w}} \big \Vert _p&= \bigg \Vert \, \frac{1}{m}\sum _{i=1}^m \mathbf{u}_i - \frac{1}{m} \sum _{i=1}^m\mathbf{w}_i \,\bigg \Vert _p \\&= \frac{1}{m}\bigg \Vert \, \sum _{i=1}^m (\mathbf{u}_i - \mathbf{w}_i) \,\bigg \Vert _p&\text {from (12)}\\&\le \frac{1}{m} \sum _{i=1}^m \big \Vert \mathbf{u}_i - \mathbf{w}_i \big \Vert _p&\text {from (11)} \end{aligned}$$

This can be generalized to curves using the triangle inequality with a Lebesgue integrable function \(\Vert \int _0^1 f(t) \, dt \,\Vert _p \,\le \, \int _0^1\Vert f(t)\Vert _p \, dt \,,\; 1 \le p < \infty \,,\; f \in \mathcal {L}^1(\mathbb {R})\) [6].

B Streamline Search Comparison

Fig. 8.
figure 8

Results of the proximity search for the left Arcuate Fasciculus (AF): a) the bundle atlas from [13, 37], b) RecoBundles result, c) RecoBundles result (in green) showing in red a few streamlines missing in RecoBundles but present in the proposed technique with a 4 mm search, and in purple, streamlines missing in RecoBundles but present in the proposed technique with a 6 mm search. The proposed proximity search, mdist\(_{L^2}(\cdot ,\cdot ) \le r\), using a radius of: d) 4 mm, e) 6 mm, and f) 8 mm. (Color figure online)

Fig. 9.
figure 9

Results of the proximity search for the central portion of the Corpus Callosum (CC_3): a) the bundle atlas from [13, 37], b) RecoBundles result, c) RecoBundles result (in green) showing in red a few streamlines missing in RecoBundles but present in the proposed technique with a 4 mm search, and in purple, streamlines missing in RecoBundles but present in the proposed technique with a 6 mm search. The proposed proximity search, mdist\(_{L^2}(\cdot ,\cdot ) \le r\), using a radius of: d) 4 mm, e) 6 mm, and f) 8 mm. (Color figure online)

Fig. 10.
figure 10

Results of the proximity search for the left Uncinate Fasciculus (UF): a) the bundle atlas from [13, 37], b) RecoBundles result, c) RecoBundles result (in green) showing in red a few streamlines missing in RecoBundles but present in the proposed technique with a 4 mm search, and in purple, streamlines missing in RecoBundles but present in the proposed technique with a 6 mm search. The proposed proximity search, mdist\(_{L^2}(\cdot ,\cdot ) \le r\), using a radius of: d) 4 mm, e) 6 mm, and f) 8 mm. (Color figure online)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

St-Onge, E., Garyfallidis, E., Collins, D.L. (2021). Fast Tractography Streamline Search. In: Cetin-Karayumak, S., et al. Computational Diffusion MRI. CDMRI 2021. Lecture Notes in Computer Science(), vol 13006. Springer, Cham. https://doi.org/10.1007/978-3-030-87615-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87615-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87614-2

  • Online ISBN: 978-3-030-87615-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics