Skip to main content

An Agent Architecture for Knowledge Discovery and Evolution

  • Conference paper
  • First Online:
KI 2021: Advances in Artificial Intelligence (KI 2021)

Abstract

The abductive theory of method (ATOM) was recently proposed to describe the process that scientists use for knowledge discovery. In this paper we propose an agent architecture for knowledge discovery and evolution (KDE) based on ATOM. The agent incorporates a combination of ontologies, rules and Bayesian networks for representing different aspects of its internal knowledge. The agent uses an external AI service to detect unexpected situations from incoming observations. It then uses rules to analyse the current situation and a Bayesian network for finding plausible explanations for unexpected situations. The architecture is evaluated and analysed on a use case application for monitoring daily household electricity consumption patterns.

Supported by Hasso Plattner Institute (HPI) for Digital Engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adam, C., Gaudou, B.: BDI agents in social simulations: a survey. Knowl. Eng. Rev. 31(3), 207–238 (2016)

    Article  Google Scholar 

  2. Adeleke, J.A.: A semantic sensor web framework for proactive environmental monitoring and control. Ph.D. thesis, University of KwaZulu-Natal, Durban (ukzn) (2017)

    Google Scholar 

  3. Bordini, R.H., El Fallah Seghrouchni, A., Hindriks, K., Logan, B., Ricci, A.: Agent programming in the cognitive era. Auton. Agent. Multi-Agent Syst. 34(2), 1–31 (2020). https://doi.org/10.1007/s10458-020-09453-y

    Article  Google Scholar 

  4. Bratman, M.E., Israel, D.J., Pollack, M.E.: Plans and resource-bounded practical reasoning. Comput. Intell. 4(3), 349–355 (1988)

    Article  Google Scholar 

  5. Coetzer, W., Moodley, D., Gerber, A.: A knowledge-based system for generating interaction networks from ecological data. Data Knowl. Eng. 112, 55–78 (2017)

    Article  Google Scholar 

  6. Elhadj, H.B., Sallabi, F., Henaien, A., Chaari, L., Shuaib, K., Al Thawadi, M.: Do-care: a dynamic ontology reasoning based healthcare monitoring system. Future Gener. Comput. Syst. 118, 417–431 (2021)

    Article  Google Scholar 

  7. Fagundes, M.S., Vicari, R.M., Coelho, H.: Deliberation process in a BDI model with Bayesian networks. In: Ghose, A., Governatori, G., Sadananda, R. (eds.) PRIMA 2007. LNCS (LNAI), vol. 5044, pp. 207–218. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01639-4_18

    Chapter  Google Scholar 

  8. Gil, Y., et al.: Automated hypothesis testing with large scientific data repositories. In: Proceedings of the Fourth Annual Conference on Advances in Cognitive Systems (ACS), vol. 2, p. 4 (2016)

    Google Scholar 

  9. Gil, Y., et al.: Towards continuous scientific data analysis and hypothesis evolution. In: AAAI, pp. 4406–4414 (2017)

    Google Scholar 

  10. Haig, B.D.: An abductive theory of scientific method. In: Method Matters in Psychology. SAPERE, vol. 45, pp. 35–64. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01051-5_3

    Chapter  Google Scholar 

  11. Haig, B.D.: The importance of scientific method for psychological science. Psychol. Crime Law 25(6), 527–541 (2019)

    Article  Google Scholar 

  12. Han, J., Kamber, M., Pei, J.: Data mining concepts and techniques third edition. Morgan Kaufmann Ser. Data Manag. Syst. 5(4), 83–124 (2011)

    Google Scholar 

  13. Hristoskova, A., Sakkalis, V., Zacharioudakis, G., Tsiknakis, M., De Turck, F.: Ontology-driven monitoring of patient’s vital signs enabling personalized medical detection and alert. Sensors 14(1), 1598–1628 (2014)

    Article  Google Scholar 

  14. King, R.D., Rowland, J., Aubrey, W., Liakata, M., Markham, M., Soldatova, L.N., Whelan, K.E., Clare, A., Young, M., Sparkes, A., et al.: The robot scientist adam. Computer 42(8), 46–54 (2009)

    Article  Google Scholar 

  15. King, R.D., et al.: The automation of science. Science 324(5923), 85–89 (2009)

    Article  Google Scholar 

  16. King, R.D., et al.: Functional genomic hypothesis generation and experimentation by a robot scientist. Nature 427(6971), 247–252 (2004)

    Article  Google Scholar 

  17. Klapiscak, T., Bordini, R.H.: JASDL: a practical programming approach combining agent and semantic web technologies. In: Baldoni, M., Son, T.C., van Riemsdijk, M.B., Winikoff, M. (eds.) DALT 2008. LNCS (LNAI), vol. 5397, pp. 91–110. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-93920-7_7

    Chapter  Google Scholar 

  18. Montagna, S., Mariani, S., Gamberini, E., Ricci, A., Zambonelli, F.: Complementing agents with cognitive services: a case study in healthcare. J. Med. Syst. 44(10), 1–10 (2020)

    Article  Google Scholar 

  19. Moreira, Á.F., Vieira, R., Bordini, R.H., Hübner, J.F.: Agent-oriented programming with underlying ontological reasoning. In: Baldoni, M., Endriss, U., Omicini, A., Torroni, P. (eds.) DALT 2005. LNCS (LNAI), vol. 3904, pp. 155–170. Springer, Heidelberg (2006). https://doi.org/10.1007/11691792_10

    Chapter  Google Scholar 

  20. Muhammad, F., et al.: A novelty-centric agent architecture for changing worlds. In: Proceedings of the 20th International Conference on Autonomous Agents and MultiAgent Systems, pp. 925–933 (2021)

    Google Scholar 

  21. Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI-architecture. KR 91, 473–484 (1991)

    Google Scholar 

  22. Rao, A.S., Georgeff, M.P., et al.: BDI agents: from theory to practice. In: Icmas, vol. 95, pp. 312–319 (1995)

    Google Scholar 

  23. Savaglio, C., Ganzha, M., Paprzycki, M., Bădică, C., Ivanović, M., Fortino, G.: Agent-based internet of things: state-of-the-art and research challenges. Future Gener. Comput. Syst. 102, 1038–1053 (2020)

    Article  Google Scholar 

  24. Sen, A., Sterner, B., Franz, N., Powel, C., Upham, N.: Combining machine learning & reasoning for biodiversity data intelligence. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 17, pp. 14911–14919 (2021)

    Google Scholar 

  25. Silva, D.G., Gluz, J.C.: AgentSpeak (PL): a new programming language for BDI agents with integrated Bayesian network model. In: 2011 International Conference on Information Science and Applications, pp. 1–7. IEEE (2011)

    Google Scholar 

  26. Sondes, T., Elhadj, H.B., Chaari, L.: An ontology-based healthcare monitoring system in the internet of things. In: 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC), pp. 319–324. IEEE (2019)

    Google Scholar 

  27. Tiddi, I., d’Aquin, M., Motta, E.: An ontology design pattern to define explanations. In: Proceedings of the 8th International Conference on Knowledge Capture, pp. 1–8 (2015)

    Google Scholar 

  28. Tiddi, I., d’Aquin, M., Motta, E.: Dedalo: looking for clusters explanations in a labyrinth of linked data. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8465, pp. 333–348. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07443-6_23

    Chapter  Google Scholar 

  29. Toussaint, W.: Evaluation of clustering techniques for generating household energy consumption patterns in a developing country. Master’s thesis, Faculty of Science, University of Cape Town (2019)

    Google Scholar 

  30. Toussaint, W., Moodley, D.: Comparison of clustering techniques for residential load profiles in South Africa. In: Davel, M.H., Barnard, E. (eds.) Proceedings of the South African Forum for Artificial Intelligence Research Cape Town, South Africa, 4–6 December 2019. CEUR Workshop Proceedings, vol. 2540, pp. 117–132. CEUR-WS.org (2019)

    Google Scholar 

  31. Toussaint, W., Moodley, D.: Automating cluster analysis to generate customer archetypes for residential energy consumers in South Africa. arXiv preprint arXiv:2006.07197 (2020)

  32. Wanyana, T., Moodley, D., Meyer, T.: An ontology for supporting knowledge discovery and evolution. In: Gerber, A. (ed.) Southern African Conference for Artificial Intelligence Research (SACAIR), pp. 206–221 (2020)

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Hasso Plattner Institute for digital engineering through the HPI Research school at UCT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tezira Wanyana .

Editor information

Editors and Affiliations

A Appendices

A Appendices

1.1 A.1 Appendix 1 -An Abstract Bayesian Network

Fig. 4.
figure 4

An abstract Bayesian network.

1.2 A.2 Appendix 2 - Sample SWRL Rules

figure c

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wanyana, T., Moodley, D. (2021). An Agent Architecture for Knowledge Discovery and Evolution. In: Edelkamp, S., Möller, R., Rueckert, E. (eds) KI 2021: Advances in Artificial Intelligence. KI 2021. Lecture Notes in Computer Science(), vol 12873. Springer, Cham. https://doi.org/10.1007/978-3-030-87626-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87626-5_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87625-8

  • Online ISBN: 978-3-030-87626-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics