Skip to main content

Classification of Aerial Manipulation Systems and Algorithms for Controlling the Movement of Onboard Manipulator

  • Conference paper
  • First Online:
Interactive Collaborative Robotics (ICR 2021)

Abstract

Instrumentation of an unmanned aerial vehicle (UAV) with devices for physical interaction with ground-based objects is a popular scientific branch in the domain of robotics. Physical interaction of an onboard aerial manipulation system with objects complicates the UAV stabilization process, what, in turn, impairs the positioning of UAV and reduces navigational accuracy of the moving end of the mechanism. In this paper, the problem of the manipulator motion control for an unmanned aerial vehicle is considered. We also propose algorithms for the calculation of the angles of joints of the manipulator, based on the solutions of the direct and inverse kinematics problems. The developed algorithms ensure retaining of the center of mass of an aerial manipulator system on the vertical axis and minimum displacement of the center of mass horizontally when moving the end mechanism along the reference trajectory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Danko, T.W., Oh, P.Y.: Design and control of a hyper-redundant manipulator for mobile manipulating unmanned aerial vehicles. J. Intell. Robot. Syst. 73, 709–723 (2014)

    Article  Google Scholar 

  2. Kochetkov, M.P., Korolkov, D.N., Petrov, V.F., Petrov, O.V., Terentev, A.I., Simonov, S.B.: Application of cluster analysis with fuzzy logic elements for ground environment assessment of robotic group. SPIIRAS Proc. 19(4), 746–773 (2020). https://doi.org/10.15622/sp.2020.19.4.2

    Article  Google Scholar 

  3. Medvedev, M.Y., Kostjukov, V.A., Pshikhopov V.X.: Method for optimizing of mobile robot trajectory in repeller sources field. Inform. Autom. 20(3), 690–726 (2021). https://doi.org/10.15622/ia.2021.3.7

  4. Gardecki, S., Kasiński, A., Bondyra, A., Ga̧sior, P.: Multirotor aerial platform with manipulation system - static disturbances. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) ICA 2017. AISC, vol. 550, pp. 357–366. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54042-9_33

    Chapter  Google Scholar 

  5. Suarez, A., Heredia, G., Ollero, A.: Compliant and lightweight anthropomorphic finger module for aerial manipulation and grasping. In: Robot 2015: Second Iberian Robotics Conference, vol. 417, pp. 543–555 (2015)

    Google Scholar 

  6. Valavanis, K., Vachtsevanos, J.: Handbook of Unmanned Aerial Vehicles. Springer, Netherlands (2015)

    Book  Google Scholar 

  7. Pound, P., Bersak, D.R., Dollar, A.M.: Grasping from the air: hovering capture and load stability. In: IEEE International conference on robotics and automation, pp. 2491–2498 (2011)

    Google Scholar 

  8. Bernard, M., Kondak, K.: Generic slung load transportation system using small size helicopters. In: 2009 IEEE International Conference on Robotics and Automation, pp. 3258–3264 (2009)

    Google Scholar 

  9. Bernard, M., Kondak, K., Maza, I., Ollero, A.: Autonomous transportation and deployment with aerial robots for search and rescue missions. J. Field Robot. 28, 914–931 (2011)

    Article  Google Scholar 

  10. Graham, K.: Development of a quadrotor slung payload system. University of Toronto, Toronto. Master Thesis, no. 27541348 (2019)

    Google Scholar 

  11. Vargas, A., Ireland, M., Anderson D.: Swing free manoeuvre controller for RUAS slung-load system using ESN. In: 1 World Congress on Unmanned Systems Engineering. Oxford. (2014)

    Google Scholar 

  12. Sayyadi, H., Soltani, A.: Modeling and control for cooperative transport of a slung fluid container using quadrotors. Chin. J. Aeronaut. 31(2), 262–272 (2018)

    Article  Google Scholar 

  13. Shirania, B., Najafib, M., Izadia, I.: Cooperative load transportation using multiple UAVs. Aerosp. Sci. Technol. 84, 158–169 (2019)

    Article  Google Scholar 

  14. Michael, N., Fink, J., Kumar, V.: Cooperative manipulation and transportation with aerial robots. Auton Robot. 30, 73–86 (2011)

    Article  Google Scholar 

  15. Aeroarms URL: www.aeroarms-project.eu

  16. Lin, T., Li, Y., Qi, J., Meng, X.: Modeling and controller design of hydraulic rotorcraft aerial manipulator. In: 27th Chinese Control and Decision Conference (2015)

    Google Scholar 

  17. Shimahara, S., Leewiwatwong, S., Ladig, R., Shimonomura, K.: Aerial torsional manipulation employing multi-rotor flying robot. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1595–1600 (2016)

    Google Scholar 

  18. Sanchez-Cuevas, P.J., Heredia, G., Ollero, A.: Multirotor UAS for bridge inspection by contact using the ceiling effect. In: 2017 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 767–774 (2017).

    Google Scholar 

  19. Cacace, J., Finzi, A., Lippiello, V., Loianno, G., Sanzone, D.: Aerial service vehicles for industrial inspection: task decomposition and plan execution. Appl. Intell. 42(1), 49–62 (2014). https://doi.org/10.1007/s10489-014-0542-0

    Article  Google Scholar 

  20. Kutia, J., Stol, K., Xu, W.: Aerial manipulator interactions with trees for canopy sampling. IEEE/ASME Trans. Mechatron. 23(4), 1740–1749 (2018)

    Article  Google Scholar 

  21. Pope, M.T., Kimes, W.C., Jiang, H., Hawkes, E.W.: A multimodal robot for perching and climbing on vertical outdoor surfaces. IEEE Trans. Robot. 33(1), 38–48 (2017)

    Article  Google Scholar 

  22. Kim, S., Choi, S., Kim, H.J.: Aerial manipulation using a quadrotor with a two DOF robotic arm. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4990–4995 (2013)

    Google Scholar 

  23. Papachristos, P., Alexis, K., Tzes, A.: Efficient force exertion for aerial robotic manipulation: exploiting the thrust-vectoring authority of a tri-tiltrotor UAV. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 4500–4505 (2014)

    Google Scholar 

  24. Arleo, G., Caccavale, F., Muscio, G., Pierri, F.: Control of quadrotor aerial vehicles equipped with a robotic arm. In: 21st Mediterranean Conference on Control and Automation, pp. 1174–1180 (2013)

    Google Scholar 

  25. Yang, H., Lee, D.: Dynamics and control of quadrotor with robotic manipulator. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 5544–5549 (2014)

    Google Scholar 

  26. Jiang, G., Voyles, R.M.: Hexrotor UAV platform enabling dextrous aerial mobile manipulation. In: 2013 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR) (2014)

    Google Scholar 

  27. Heredia, G., Jimenez-Cano, A.E., Sanchez, I., Llorente, D.: Control of a multirotor outdoor aerial manipulator. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3417–3422 (2014)

    Google Scholar 

  28. Suarez, A., Soria, P.R, Heredia, G., Arrue, B.C.: Anthropomorphic, compliant and lightweight dual arm system for aerial manipulation. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 992–997 (2017)

    Google Scholar 

  29. Ryll, M., Bicego, D., Franchi, A.: Modeling and control of fast-hex: a fully–actuated by synchronized–tilting hexarotor. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1689–1694 (2016)

    Google Scholar 

  30. Theys, B., Dimitriadis, G., Hendrick, P., De Schutter, J.: Influence of propeller configuration on propulsion system efficiency of multi-rotor unmanned aerial vehicles. In: 2016 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 195–201 (2016)

    Google Scholar 

  31. Kuciński, T., et al.: Deployable manipulator technology with application for UAVs. In: Sąsiadek, J. (eds.) Aerospace Robotics II. GeoPlanet: Earth and Planetary Sciences, pp. 93–103. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-13853-4_9

  32. Kondak, K., Krieger, K., Albu-Schäeffer, A., Schwarzbach, M.: Closed-loop behavior of an autonomous helicopter equipped with a robotic arm. Int. J. Adv. Robot. Syst. 10(2), 145 (2013)

    Google Scholar 

  33. Bejar, M., Ollero, A., Kondak, K.: Helicopter based aerial manipulators. In: Ollero, A., Siciliano, B. (eds.) Aerial Robotic Manipulation. STAR, vol. 129, pp. 35–52. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12945-3_3

    Chapter  Google Scholar 

  34. Huber, F., Kondak, K., Krieger, K., Sommer, D.: First analysis and experiments in aerial manipulation using fully actuated redundant robot arm. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3452–3457 (2013)

    Google Scholar 

  35. Gentili, L., Naldi, R., Marconi, L.: Modeling and control of VTOL UAVs interacting with the environment. In: 2008 47th IEEE Conference on Decision and Control, pp. 1231–1236 (2008)

    Google Scholar 

  36. Marconi, L., Naldi, R.: Control of aerial robots: hybrid force and position feedback for a ducted fan. IEEE Control Syst. Mag. 32(4), 43–65 (2012)

    Article  MathSciNet  Google Scholar 

  37. Korpela, M., Danko, T.W., Oh P.Y.: Designing a system for mobile manipulation from an unmanned aerial vehicle. In: 2011 IEEE Conference on Technologies for Practical Robot Applications (2011)

    Google Scholar 

  38. Zhao, M., Kawasaki, K., Chen, X., Noda, S., Okada, K., Inaba, M.: Whole-body aerial manipulation by transformable multirotor with two-dimensional multilinks. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 5175–5182 (2017)

    Google Scholar 

  39. Nguyen, V., Saveliev, A., Ronzhin, A.: Mathematical modelling of control and simultaneous stabilization of 3-DOF aerial manipulation system. In: International Conference on Interactive Collaborative Robotics, pp. 253–264 (2020)

    Google Scholar 

  40. Lavrenov, L.O., Magid, E.A., Matsuno, F., Svinin, M.M., Suthakorn, J.: Development and implementation of spline-based path planning algorithm in ROS/Gazebo environment. SPIIRAS Proc. 18(1), 57–84 (2019). https://doi.org/10.15622/sp.18.1.57-84

    Article  Google Scholar 

  41. Medvedev, M.Y., Kostjukov, V.A., Pshikhopov, V.X.: Method for optimizing of mobile robot trajectory in repeller sources field. Inform. Autom. 20(3), 690–726 (2021). https://doi.org/10.15622/ia.2021.3.7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Ronzhin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, V., Ngo, T., Vu, Q., Ronzhin, A. (2021). Classification of Aerial Manipulation Systems and Algorithms for Controlling the Movement of Onboard Manipulator. In: Ronzhin, A., Rigoll, G., Meshcheryakov, R. (eds) Interactive Collaborative Robotics. ICR 2021. Lecture Notes in Computer Science(), vol 12998. Springer, Cham. https://doi.org/10.1007/978-3-030-87725-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87725-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87724-8

  • Online ISBN: 978-3-030-87725-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics