Skip to main content

Analysis of Kinematic Diagrams and Design Solutions of Mobile Agricultural Robots

  • Conference paper
  • First Online:
Interactive Collaborative Robotics (ICR 2021)

Abstract

Automation and robotization in agriculture can reduce the amount of manual labor and increase yields and product quality. To perform tasks on agricultural land, the robot needs to move on open ground and cover significant distances. Thus, the main structural part of the agricultural robot is an autonomous mobile platform on which various functional equipment is installed. The rapid development of agricultural robotics makes it urgent to develop multifunctional platforms for applications in this area. To select the optimal kinematic scheme of the future robotic platform, it is necessary to analyze the existing solutions in this area and draw conclusions about the advantages and disadvantages of various options. This work is aimed at the search and selection of kinematic schemes for basic robotic platforms, the use of which is planned on agricultural land and in greenhouse complexes. The paper analyzes the design solutions and propellers used by the authors of research works and projects in the field of agricultural robotics. Based on the analysis, the most suitable kinematic schemes of mobile platforms were selected for this area, their properties and principles of operation were considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Skvortsov, E.A.: Robots in agricultural reproduction process. Agrarian Bull. Urals 3(133), 89–93 (2015)

    Google Scholar 

  2. Shanygin, S.V.: Robots as Means of Agriculture Mechanization. BMSTU J. Mech. Eng. 3, 39–42 (2013)

    Google Scholar 

  3. Pavliuk, N.A., Smirnov, P.A., Kovalev, A.D.: Constructional and architectural solutions for service mobile platform with pluggable modules. Izvestiya Tula State Univ. 10, 181–193 (2019)

    Google Scholar 

  4. Nie, C., Pacheco Corcho, X., Spenko, M.: Robots on the move: versatility and complexity in mobile robot locomotion. IEEE Robot. Autom. Mag. 20(4), 72–82 (2013). https://doi.org/10.1109/mra.2013.2248310

    Article  Google Scholar 

  5. Ipate, G., Moise, V., Biris, S.S., Voicu, G., Ilie, F., Constantin, G.A.: Design concepts of mobile robots for agriculture. In: 7th International Conference on Thermal Equipment, Renewable Energy and Rural Development, pp. 427–434. Drobeta Turnu Severin, Romania (2018)

    Google Scholar 

  6. Hassan, M.U., Ullah, M., Iqbal, J.: Towards autonomy in agriculture: design and prototyping of a robotic vehicle with seed selector. In: 2016 2nd International Conference on Robotics and Artificial Intelligence (ICRAI), pp. 37–44. IEEE (2016)

    Google Scholar 

  7. Gollakota, A., Srinivas, M.B.: Agribot—A multipurpose agricultural robot. In: Annual IEEE India Conference, pp. 1–4 (2011)

    Google Scholar 

  8. Paillat, J.L., Lucidarme, P., Hardouin, L.: Variable Geometry Tracked Vehicle (VGTV) prototype: conception, capability and problems. In: HUMOUS (2008)

    Google Scholar 

  9. Chou, J.J., Yang, L.S.: Innovative design of a claw-wheel transformable robot. In: International Conference on Robotics and Automation, pp. 1337–1342. IEEE (2013)

    Google Scholar 

  10. Deng, Q., Wang, S., Xu, W., Mo, J., Liang, Q.: Quasi passive bounding of a quadruped model with articulated spine. Mech. Mach. Theory 52, 232–242 (2012)

    Article  Google Scholar 

  11. Lei, J., Yu, H., Wang, T.: Dynamic bending of bionic flexible body driven by pneumatic artificial muscles (PAMs) for spinning gait of quadruped robot. Chin. J. Mech. Eng. 29(1), 11–20 (2016)

    Article  Google Scholar 

  12. Sharipov, V.M., et al.: Construction of tractors. A textbook for university students studying in the specialty “Automobile and Tractor Engineering”. Moscow State University of Mechanical Engineering (MAMI), Moscow (2007)

    Google Scholar 

  13. Bechar, A., Vigneault, C.: Agricultural robots for field operations: concepts and components. Biosys. Eng. 149, 94–111 (2016)

    Article  Google Scholar 

  14. Shabalina, K., Sagitov, A., Magid, E.: Comparative analysis of mobile robot wheels design. In: 2018 11th International Conference on Developments in eSystems Engineering (DeSE), pp. 175–179. IEEE (2018)

    Google Scholar 

  15. Campion, G., Bastin, G., Dandrea-Novel, B.: Structural properties and classification of kinematic and dynamic models of wheeled mobile robots. IEEE Trans. Robot. Autom. 12(1), 47–62 (1996)

    Article  Google Scholar 

  16. Afonin, A.N., Aleynikov, A.Y.: Mobile robot BELSU-bot. Technique and technologies of the XXI century: monograph. Logos, Stavropol (2016)

    Google Scholar 

  17. Mrozik, D., Mikolajczyk, T., Moldovan, L., Pimenov, D.Y.: Unconventional drive system of a 3D printed wheeled mobile robot. Procedia Manuf. 46, 509–516 (2020)

    Article  Google Scholar 

  18. Cariou, C., Lenain, R., Thuilot, B., Berducat, M.: Automatic guidance of a four-wheel-steering mobile robot for accurate field operations. J. Field Robot. 26(6–7), 504–518 (2009)

    Article  Google Scholar 

  19. Tătar, M.O., Cirebea, C., Mândru, D.: Structures of the omnidirectional robots with Swedish wheels. Solid State Phenom. 98, 132–137 (2013)

    Article  Google Scholar 

  20. Tavakoli, M., Lourenço, J., Viegas, C., Neto, P., de Almeida, A.T.: The hybrid OmniClimber robot: wheel based climbing, arm based plane transition, and switchable magnet adhesion. Mechatronics 36, 136–146 (2016)

    Article  Google Scholar 

  21. Moskvin, I., Lavrenov, R., Magid, E., Svinin, M.: Modelling a crawler robot using wheels as pseudo-tracks: model complexity vs performance. In: 2020 IEEE 7th International Conference on Industrial Engineering and Applications (ICIEA), pp. 1–5. IEEE (2020)

    Google Scholar 

  22. Magid, E., Tsubouchi, T., Koyanagi, E., Yoshida, T.: Static balance for rescue robot navigation: losing balance on purpose within random step environment. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 349–356. IEEE (2010)

    Google Scholar 

  23. Mavrin, I., Lavrenov, R., Svinin, M., Sorokin, S., Magid, E.: Remote control library and GUI development for Russian crawler robot Servosila Engineer. In: MATEC Web of Conferences, vol. 161, p. 03016. EDP Sciences (2018)

    Google Scholar 

  24. Nagatani, K., et al.: Redesign of rescue mobile robot Quince. In: 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics, pp. 13–18. IEEE (2011)

    Google Scholar 

  25. Bruzzone, L., Quaglia, G.: Locomotion systems for ground mobile robots in unstructured environments. Mech. Sci. 3(2), 49–62 (2012)

    Article  Google Scholar 

  26. Luneckas, M., Luneckas, T., Udris, D., Ferreira, N.M.F.: Hexapod robot energy consumption dependence on body elevation and step height. Elektronika ir Elektrotechnika. 20(7), 7–10 (2014)

    Article  Google Scholar 

  27. Medvedev, M.Y., Kostjukov, V.A., Pshikhopov, V.X.: Method for optimizing of mobile robot trajectory in repeller sources field. Inform. Autom. 20(3), 690–726 (2021). https://doi.org/10.15622/ia.2021.3.7

    Article  Google Scholar 

  28. Kochetkov, M.P., Korolkov, D.N., Petrov, V.F., Petrov, O.V., Terentev, A.I., Simonov, S.B.: Application of cluster analysis with fuzzy logic elements for ground environment assessment of robotic group. SPIIRAS Proc. 19(4), 746–773 (2020). https://doi.org/10.15622/sp.2020.19.4.2

    Article  Google Scholar 

  29. Tătar, M.O., Gyarmati, M.: Locomotion unit for mobile robots. In: IOP Conference Series: Materials Science and Engineering, vol. 444, no. 5, p. 052024. IOP Publishing (2018)

    Google Scholar 

  30. Kumar, P., Saab, W., Ben-Tzvi, P.: Design of a multi-directional hybrid-locomotion modular robot with feedforward stability control. In: ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers Digital Collection (2017)

    Google Scholar 

  31. Zhu, Y., Fei, Y., Xu, H.: Stability analysis of a wheel-track-leg hybrid mobile robot. J. Intell. Rob. Syst. 91(3), 515–528 (2018). https://doi.org/10.1007/s10846-017-0724-1

    Article  Google Scholar 

  32. Bruzzone, L., Baggetta, M., Nodehi, S.E., Bilancia, P., Fanghella, P.: Functional design of a hybrid leg-wheel-track ground mobile robot. Machines. 9(10) (2021)

    Google Scholar 

  33. Chen, S.C., Huang, K.J., Chen, W.H., Shen, S.Y., Li, C.H., Lin, P.C.: Quattroped: a leg-wheel transformable robot. IEEE/ASME Trans. Mechatron. 19(2), 730–742 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vasiunina, I., Krestovnikov, K., Bykov, A., Erashov, A. (2021). Analysis of Kinematic Diagrams and Design Solutions of Mobile Agricultural Robots. In: Ronzhin, A., Rigoll, G., Meshcheryakov, R. (eds) Interactive Collaborative Robotics. ICR 2021. Lecture Notes in Computer Science(), vol 12998. Springer, Cham. https://doi.org/10.1007/978-3-030-87725-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87725-5_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87724-8

  • Online ISBN: 978-3-030-87725-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics