Skip to main content

Adaptive Event Triggered Control of Nonholonomic Mobile Robots

  • Conference paper
  • First Online:
Interactive Collaborative Robotics (ICR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12998))

Included in the following conference series:

  • 647 Accesses

Abstract

In this paper, the design of adaptive regulation control of mobile robots in the presence of uncertain robot dynamics and with event-based feedback is presented. Two-layer neural networks (NN) are utilized to represent the uncertain nonlinear dynamics of the mobile robots, which is subsequently employed to generate the control torque with event-sampled measurement update. Relaxing the perfect velocity tracking assumption, control torque is designed to minimize the velocity tracking error, by explicitly taking into account the dynamics of the robot. The Lyapunov’s stability method is utilized to develop an event-sampling condition and to demonstrate the regulation performance of the mobile robot. Finally, simulation results are presented to verify theoretical claims and to demonstrate the reduction in the computations with event-sampled control execution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tabuada, P.: Event-triggered real-time scheduling of stabilizing control tasks. IEEE Trans. Autom. Control 52(9), 1680–1685 (2007)

    Article  MathSciNet  Google Scholar 

  2. Sahoo, A., Xu, H., Jagannathan, S.: Near optimal event-triggered control of nonlinear discrete-time systems using neuro-dynamic programming. IEEE Trans. Neural Netw. Learn. Syst. 27(9), 1801–1815 (2016)

    Article  MathSciNet  Google Scholar 

  3. Zhong, X., Ni, Z., He, H., Xu, X., Zhao, D.: Event-triggered reinforcement learning approach for unknown nonlinear continuous-time system. In: International Joint Conference on Neural Networks (IJCNN), pp. 3677–3684 (2014)

    Google Scholar 

  4. Guinaldo, M., Lehmann, D., Sanchez, J., Dormido, S., Johansson, K.H.: Distributed event-triggered control with network delays and packet losses. In: Annual Conference on Decision and Control (CDC), pp. 1–6 (2012)

    Google Scholar 

  5. Wang, X., Lemmon, M.D.: Event-triggering in distributed networked control systems. IEEE Trans. Autom. Control 56(3), 586–601 (2011)

    Article  MathSciNet  Google Scholar 

  6. Molin, A., Hirche, S.: On the optimality of certainty equivalence for event-triggered control systems. IEEE Trans. Autom. Control 58(2), 470–474 (2013)

    Article  MathSciNet  Google Scholar 

  7. Chen, X., Hao, F., Ma, B.: Periodic event-triggered cooperative control of multiple non-holonomic wheeled mobile robots. IET Control Theory Appl. 11(6), 890–899 (2017)

    Article  MathSciNet  Google Scholar 

  8. Yilong, Q., Fei, C., Linying, X.: Distributed event-triggered control for coupled nonholonomic mobile robots. In: 34th Chinese Control Conference (CCC), pp. 1268–1273 (2015)

    Google Scholar 

  9. Lewis, F.L., Dawson, D.M., Abdallah, C.T.: Robot Manipulator Control: Theory and Practice. CRC Press (2003)

    Google Scholar 

  10. Miah, S., Chaoui, H., Sicard, P.: Linear time-varying control law for stabilization of hopping robot during flight phase. In: 23rd International Symposium on Industrial Electronics (ISIE), pp. 1550–1554 (2014)

    Google Scholar 

  11. Guzey, H.M., Dierks, T., Jagannathan, S., Acar, L.: Hybrid consensus based control of nonholonomic mobile robot formation. J. Intell. Rob. Syst. 88(1), 181–200 (2017)

    Article  Google Scholar 

  12. Dierks, T. and Jagannathan, S.: Neural network output feedback control of robot formations. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 40(2), 383–399 (2010)

    Google Scholar 

  13. Güzey, H.M.: Adaptive event-triggered regulation control of nonholonomic mobile robots. In: Ghommam, J., Derbel, N., Zhu, Q. (eds.) New Trends in Robot Control. SSDC, vol. 270, pp. 177–188. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-1819-5_9

    Chapter  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Güzey .

Editor information

Editors and Affiliations

Appendix

Appendix

Proof of Theorem 1:

Consider the Lyapunov candidate

$$ L = \frac{1}{2}\left( {\rho^{2} + \rho \left( {\alpha^{2} + {\text{k}}_{{\upbeta }} \beta^{2} } \right)} \right) + \frac{1}{2}e_{v}^{T} \overline{M}e_{v}^{T} + 0.5tr\{ \tilde{\Theta }^{T} \Lambda \tilde{\Theta }\} . $$
(A1)

Then, the derivative of (A1) is calculated to be

$$ \begin{array}{*{20}c} {\dot{L} = \rho \dot{\rho } + \dot{\rho }\left( {\alpha ^{2} + {\text{k}}_{{{\upbeta }}} \beta ^{2} } \right) + \rho \left( {2\alpha \dot{\alpha } + 2{\text{k}}_{{{\upbeta }}} \beta \dot{\beta }} \right) + } \\ { - e_{v}^{T} \left( \begin{gathered} K_{v} e_{v} - {{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{\upgamma } }}\left( e \right) + 0.5\,e_{v}^{T} (\dot{\bar{M}} - 2\bar{V}_{m} )e_{v} + \bar{\tau }_{d} \hfill \\ + \tilde{f}\left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{z} } \right) + K_{v} e_{{ET}} \hfill \\ \end{gathered} \right) + [f\left( z \right) - f\left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{z} } \right)]) + tr\{ \tilde{\Theta }^{T} \Lambda \dot{\tilde{\Theta }}\} .} \\ \end{array} $$
(A2)

Next, applying the definitions of λ(ρi, αi, βi) and γ(ei1, ei2, ei3)\(\upgamma \left({\mathrm{e}}_{\mathrm{i}1}, {\mathrm{e}}_{\mathrm{i}2},{\mathrm{e}}_{\mathrm{i}3}\right)\) defined in (13) and (22) as well as (kinematics), respectively, gives

$$ \begin{aligned} & \dot{L} = \left( {\rho + \alpha^{2} + {\text{k}}_{{\upbeta }} \beta^{2} } \right)\left( { - k_{\rho } \rho \cos^{2} {\upalpha } + e_{v1}^{R} \cos \alpha - \cos \alpha \varepsilon_{v} } \right) \\ & + \rho \left( \begin{gathered} 2\alpha \left( { - k_{\alpha } \alpha - k_{\rho } \left( {\frac{{\sin \alpha { }\cos \alpha }}{\alpha }} \right)k_{\beta } \beta + e_{v2}^{R} - \frac{\sin \alpha }{\rho }e_{v1}^{R} + \frac{{\sin \alpha \varepsilon_{v} }}{\rho } - \varepsilon_{\omega } } \right) \hfill \\ + 2{\text{k}}_{{\upbeta }} \beta \left( {k_{\rho } \sin \alpha \cos {\upalpha } - \frac{\sin \alpha }{\rho }e_{v1}^{R} + \frac{{\sin \alpha \varepsilon_{v} }}{\rho }} \right) \hfill \\ \end{gathered} \right) \\ & - e_{v}^{T} \left( \begin{gathered} K_{v} e_{v} - \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{{\upgamma }} + 0.5\,e_{v}^{T} (\dot{\overline{M}} - 2\overline{V}_{m} )e_{v} + \overline{\tau }_{d} \hfill \\ + \tilde{f}\left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{z} } \right) + K_{v} e_{ET} \hfill \\ \end{gathered} \right) \\ & + \,[f\left( z \right) - f\left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{z} } \right)]) + tr\{ \tilde{\Theta }^{T} \Lambda \dot{\tilde{\Theta }}\} . \\ \end{aligned} $$
(A3)

After using the skew symmetry property, \(\dot{L}\) becomes

$$ \begin{aligned} & \dot{L} = \left( {\rho + \alpha^{2} + {\text{k}}_{{\upbeta }} \beta^{2} } \right)\left( { - k_{\rho } \rho \cos^{2} {\upalpha } + e_{v1}^{R} \cos \alpha - \cos \alpha \varepsilon_{v} } \right) \\ & + \,\rho \left( \begin{gathered} 2\alpha \left( { - k_{\alpha } \alpha - k_{\rho } \left( {\frac{{\sin \alpha { }\cos \alpha }}{\alpha }} \right)k_{\beta } \beta + e_{v2}^{R} - \frac{\sin \alpha }{\rho }e_{v1}^{R} + \frac{{\sin \alpha \varepsilon_{v} }}{\rho } - \varepsilon_{\omega } } \right) \hfill \\ + 2{\text{k}}_{{\upbeta }} \beta \left( {k_{\rho } \sin \alpha \cos {\upalpha } - \frac{\sin \alpha }{\rho }e_{v1}^{R} + \frac{{\sin \alpha \varepsilon_{v} }}{\rho }} \right) \hfill \\ \end{gathered} \right) \\ & - \,e_{v}^{T} \left( {K_{v} e_{v} - \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{{\upgamma }} + \overline{\tau }_{d} + \tilde{f}\left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{z} } \right) + K_{v} e_{ET} ) + [f\left( z \right) - f\left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{z} } \right)]} \right) + tr\{ \tilde{\Theta }^{T} \Lambda \dot{\tilde{\Theta }}\} . \\ \end{aligned} $$
(A4)

By following the similar steps done in 11 without the blending functions yields (A4)

$$ \begin{gathered} \dot{L} = - \rho^{2} \cos^{2} {\upalpha } - \rho \alpha^{2} - {{\rho \cos^{2} {\upalpha }\left( {\alpha^{2} + {\text{k}}_{{\upbeta }} \beta^{2} } \right)} \mathord{\left/ {\vphantom {{\rho \cos^{2} {\upalpha }\left( {\alpha^{2} + {\text{k}}_{{\upbeta }} \beta^{2} } \right)} 2}} \right. \kern-\nulldelimiterspace} 2} - \cos \alpha \left( {\rho + \alpha^{2} + {\text{k}}_{{\upbeta }} \beta^{2} } \right)\varepsilon_{v} \hfill \\ + 2\alpha \sin \alpha \varepsilon_{v} - 2\alpha \rho \varepsilon_{\omega } + \sin \alpha \varepsilon_{v} - e_{v}^{T} (K_{v} e_{v} - \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{{\upgamma }} + \overline{\tau }_{d} + \tilde{f}\left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{z} } \right) + K_{v} e_{ET} ) \hfill \\ \end{gathered} $$
(A5)
$$ + [f\left( z \right) - f\left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{z} } \right)]) + tr\left\{ {\tilde{\Theta }^{T} \Lambda \dot{\tilde{\Theta }}} \right\}. $$

Using defining of the bound \(\left\| {\psi \left( z \right)} \right\| \le \psi_{M}\), we obtain

$$ \begin{aligned} & \dot{L} \le - \rho^{2} \cos^{2} {\upalpha } - \rho \alpha^{2} - {{\rho \cos^{2} {\upalpha }\left( {\alpha^{2} + {\text{k}}_{{\upbeta }} \beta^{2} } \right)} \mathord{\left/ {\vphantom {{\rho \cos^{2} {\upalpha }\left( {\alpha^{2} + {\text{k}}_{{\upbeta }} \beta^{2} } \right)} 2}} \right. \kern-\nulldelimiterspace} 2} - \cos \alpha \left( {\rho + \alpha^{2} + {\text{k}}_{{\upbeta }} \beta^{2} } \right)\varepsilon_{v} \\ & + 2\alpha \sin \alpha \varepsilon_{v} - 2\alpha \rho \varepsilon_{\omega } + \sin \alpha \varepsilon_{v} - \left( {K_{v} - 0.5} \right)\left\| {e_{v} } \right\|^{2} + e_{v}^{T} \tilde{\Theta }^{T} \psi \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{z} } \right) + e_{v}^{T} K_{v} e_{ET} \\ \end{aligned} $$
(A6)
$$ + 2\psi_{M}^{2} \left\| \Theta \right\|^{2} + e_{v}^{T} \left( {\overline{\tau }_{d} } \right) + tr\left\{ {\tilde{\Theta }^{T} \Lambda \dot{\tilde{\Theta }}} \right\}. $$

Utilizing the parameter adaptation rule defined in (21) and the definition of the NN weights estimation error, we have

$$ \begin{aligned} & \dot{L}_{i} \le - \rho ^{2} \cos ^{2} {{\upalpha }} - \rho \alpha ^{2} - {{\rho \cos ^{2} {{\alpha }}\left( {\alpha ^{2} + {\text{k}}_{{{\upbeta }}} \beta ^{2} } \right)} \mathord{\left/ {\vphantom {{\rho \cos ^{2} {{\alpha }}\left( {\alpha ^{2} + {\text{k}}_{{{\upbeta }}} \beta ^{2} } \right)} 2}} \right. \kern-\nulldelimiterspace} 2} - \cos \alpha \left( {\rho + \alpha ^{2} + {\text{k}}_{{{\beta }}} \beta ^{2} } \right)\varepsilon _{v} \\ & + 2\alpha \sin \alpha \varepsilon _{v} - 2\alpha \rho \varepsilon _{\omega } + \sin \alpha \varepsilon _{v} . - \left( {K_{v} - 0.5} \right)\left\| {e_{v} } \right\|^{2} + e_{v}^{T} \tilde{\Theta }^{T} \psi \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{z} } \right) + e_{v}^{T} K_{v} e_{{ET}} \\ & + 2\psi _{M}^{2} \left\| \Theta \right\|^{2} + e_{v}^{T} \left( {\bar{\tau }_{d} } \right) - tr\left\{ {\tilde{\Theta }^{T} \Lambda \left( {\Lambda _{1} \psi \left( z \right)e_{v}^{T} - \Lambda _{1} \kappa \hat{\Theta }} \right)} \right\}. \\ \end{aligned} $$
$$ \begin{aligned} & \dot{L}_{i} \le - \rho ^{2} \cos ^{2} {{\upalpha }} - \rho \alpha ^{2} - {{\rho \cos ^{2} {{\alpha }}\left( {\alpha ^{2} + {\text{k}}_{{{\upbeta }}} \beta ^{2} } \right)} \mathord{\left/ {\vphantom {{\rho \cos ^{2} {{\alpha }}\left( {\alpha ^{2} + {\text{k}}_{{{\upbeta }}} \beta ^{2} } \right)} 2}} \right. \kern-\nulldelimiterspace} 2} \\ & + \,\left[ {\begin{array}{*{20}c} { - \cos \alpha \left( {\rho + \alpha ^{2} + {\text{k}}_{{{\beta }}} \beta ^{2} } \right) + 2\alpha \sin \alpha + \sin \alpha } & { - 2\alpha \rho } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {\varepsilon _{v} } \\ {\varepsilon _{\omega } } \\ \end{array} } \right] \\ & - \,\left( {K_{v} - 0.5} \right)\left\| {e_{v} } \right\|^{2} + e_{v}^{T} \tilde{\Theta }^{T} \psi \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{z} } \right) + e_{v}^{T} K_{v} e_{{ET}} + 2\psi _{M}^{2} \left\| \Theta \right\|^{2} \\ & + \,e_{v}^{T} \left( {\bar{\tau }_{d} } \right) - tr\left\{ {\tilde{\Theta }^{T} \Lambda \left( {\Lambda _{1} \psi \left( z \right)e_{v}^{T} - \Lambda _{1} \kappa \hat{\Theta }} \right)} \right\}. \\ \end{aligned} $$

Combining the similar terms and using the Young’s inequality once again yields

$$ \dot{L} \le - {\rm K}{\rm E} + K_{ET} {\rm E}_{ET} + B $$
(A7)

where \(B = 2\psi_{M}^{2} \left\| \Theta \right\|^{2}\) with \(\psi_{M} > \psi \left( t \right)\) is the upper bound for the activation function, \(\Xi_{i} = [\rho^{2} \,\,\alpha^{2} \,\,\,\,\left\| {e_{v} } \right\|^{2} \,\,\,\left\| {\tilde{\Theta }} \right\|^{2} ],\,\) \(\,{\rm K}_{i} = \left[ {\begin{array}{*{20}c} {\overline{\rm k}_{1} } & {\overline{\rm k}_{2} } & {\overline{\rm k}_{3} } & \kappa \\ \end{array} } \right]\) with \(\overline{\rm k}_{1} = \cos^{2} {\upalpha }\) \(\,\overline{\rm k}_{2} = \rho\)\(\overline{\rm k}_{3} = K_{v}\). \(K_{ET} = \left[ {\begin{array}{*{20}c} \begin{gathered} - \cos \alpha \left( {\rho + \alpha^{2} + {\text{k}}_{{\upbeta }} \beta^{2} } \right) \hfill \\ + 2\alpha \sin \alpha + \sin \alpha \hfill \\ \end{gathered} & { - 2\alpha \rho } \\ \end{array} } \right],E_{ET} = \left[ {\begin{array}{*{20}c} {\varepsilon_{v} } \\ {\varepsilon_{\omega } } \\ \end{array} } \right]\). Using the assumption that the measurement errors are bounded, \(\left\| {E_{ET} } \right\| \le \,\overline{B}_{ETM}\) we can claim that the regulation and velocity tracking errors and NN weight estimation errors are bounded.

Proof of Theorem 2:

Consider the Lyapunov candidate in (A1) follow the similar steps done in the proof of the first theorem and obtain

$$ \dot{L} \le - {\rm K}{\rm E} + K_{ET} {\rm E}_{ET} + B, $$
(A8)

where \(B = 2\psi_{M}^{2} \left\| \Theta \right\|^{2}\) with \(\psi_{M} > \psi \left( t \right)\) is the upper bound for the activation function, \(\Xi_{i} = [\rho^{2} \,\,\alpha^{2} \,\,\,\,\left\| {e_{v} } \right\|^{2} \,\,\,\left\| {\tilde{\Theta }} \right\|^{2} ],\,\) \(\,{\rm K}_{i} = \left[ {\begin{array}{*{20}c} {\overline{\rm k}_{1} } & {\overline{\rm k}_{2} } & {\overline{\rm k}_{3} } & \kappa \\ \end{array} } \right]\) with \(\overline{\rm k}_{1} = \cos^{2} {\upalpha }\), \(\,\overline{\rm k}_{2} = \rho\), \(\overline{\rm k}_{3} = K_{v}\):

$$ K_{ET} = \left[ {\begin{array}{*{20}c} \begin{gathered} - \cos \alpha \left( {\rho + \alpha^{2} + {\text{k}}_{{\upbeta }} \beta^{2} } \right) \hfill \\ + 2\alpha \sin \alpha + \sin \alpha \hfill \\ \end{gathered} & { - 2\alpha \rho } \\ \end{array} } \right],E_{ET} = \left[ {\begin{array}{*{20}c} {\varepsilon_{v} } \\ {\varepsilon_{\omega } } \\ \end{array} } \right]. $$

Using the event-sampling condition (11) in (A7), we get \(\dot{L} \le - {\rm K}{\rm E} + K_{ET} {\upmu }{\rm E} + B\) Choosing \({\upmu } = {1 \mathord{\left/ {\vphantom {1 {{\rm K}_{ET} }}} \right. \kern-\nulldelimiterspace} {{\rm K}_{ET} }},\) the Lyapunov derivative is further simplified such that \(\dot{L} \le - \left( {{\rm K} - 1} \right){\rm E} + B.\) It can be seen that the regulation and velocity tracking errors and NN weight estimation errors are bounded during the inter-event period since the unknown NN weights are not updated, they remain constant during the inter-event period.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Güzey, M. (2021). Adaptive Event Triggered Control of Nonholonomic Mobile Robots. In: Ronzhin, A., Rigoll, G., Meshcheryakov, R. (eds) Interactive Collaborative Robotics. ICR 2021. Lecture Notes in Computer Science(), vol 12998. Springer, Cham. https://doi.org/10.1007/978-3-030-87725-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87725-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87724-8

  • Online ISBN: 978-3-030-87725-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics