Skip to main content

Abstract

Automated medical diagnosis systems need to be able to recognize when new diseases emerge, that are not represented in the training data (ID). Even though current out-of-distribution (OOD) detection algorithms can successfully distinguish completely different data sets, they fail to reliably identify samples from novel classes that are similar to the training data. We develop a new ensemble-based procedure that promotes model diversity and exploits regularization to limit disagreement to only OOD samples, using a batch containing an unknown mixture of ID and OOD data. We show that our procedure significantly outperforms state-of-the-art methods, including those that have access, during training, to known OOD data. We run extensive comparisons of our approach on a variety of novel-class detection scenarios, on standard image data sets as well as on new disease detection on medical image data sets (Our code is publicly available at https://github.com/ericpts/reto).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barbu, A., et al.: ObjectNet: a large-scale bias-controlled dataset for pushing the limits of object recognition models. In: Advances in Neural Information Processing, vol. 32, pp. 9453–9463 (2019)

    Google Scholar 

  2. Beede, E., et al.: A human-centered evaluation of a deep learning system deployed in clinics for the detection of diabetic retinopathy. In: Proceedings of the CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2020)

    Google Scholar 

  3. Ben-David, S., Blitzer, J., Crammer, K., Pereira, F.: Analysis of representations for domain adaptation. In: Advances in Neural Information Processing Systems, vol. 19, pp. 137–144 (2007)

    Google Scholar 

  4. Blundell, C., Cornebise, J., Kavukcuoglu, K., Wierstra, D.: Weight uncertainty in neural networks. In: Proceedings of the 32th International Conference on Machine Learning (2015)

    Google Scholar 

  5. Cao, T., Huang, C.W., Hui, D.Y.T., Cohen, J.P.: A benchmark of medical out of distribution detection. arXiv preprint arXiv:2007.04250 (2020)

  6. Chen, Y., Wei, C., Kumar, A., Ma, T.: Self-training avoids using spurious features under domain shift. arXiv preprint arXiv:2006.10032 (2020)

  7. Choi, H., Jang, E., Alemi, A.A.: WAIC, but why? Generative ensembles for robust anomaly detection. arXiv preprint arXiv:1810.01392 (2018)

  8. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2009)

    Google Scholar 

  9. Fu, Y., Hospedales, T.M., Xiang, T., Gong, S.: Transductive multi-view zero-shot learning. IEEE Trans. Pattern Anal. Mach. Intell. 37, 2332–2345 (2015)

    Article  Google Scholar 

  10. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: Proceedings of Machine Learning Research, vol. 48, pp. 1050–1059 (2016)

    Google Scholar 

  11. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17, 1–35 (2016)

    MathSciNet  MATH  Google Scholar 

  12. Geifman, Y., El-Yaniv, R.: Selective classification for deep neural networks. In: Advances in Neural Information Processing Systems, vol. 30, pp. 4878–4887 (2017)

    Google Scholar 

  13. Graves, A.: Practical variational inference for neural networks. In: Advances in Neural Information Processing Systems, vol. 24, pp. 2348–2356 (2011)

    Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  15. Hein, M., Andriushchenko, M., Bitterwolf, J.: Why ReLU networks yield high-confidence predictions far away from the training data and how to mitigate the problem. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  16. Hendrycks, D., Dietterich, T.: Benchmarking neural network robustness to common corruptions and perturbations. In: Proceedings of the International Conference on Learning Representations (2019)

    Google Scholar 

  17. Hendrycks, D., Mazeika, M., Dietterich, T.: Deep anomaly detection with outlier exposure. In: Proceedings of the International Conference on Learning Representations (2019)

    Google Scholar 

  18. Katsamenis, I., Protopapadakis, E., Voulodimos, A., Doulamis, A., Doulamis, N.: Transfer learning for COVID-19 pneumonia detection and classification in chest X-ray images. medRxiv (2020)

    Google Scholar 

  19. Kirichenko, P., Izmailov, P., Wilson, A.G.: Why normalizing flows fail to detect out-of-distribution data. In: Advances in Neural Information Processing Systems, vol. 33, pp. 20578–20589 (2020)

    Google Scholar 

  20. Kiryo, R., Niu, G., du Plessis, M.C., Sugiyama, M.: Positive-Unlabeled learning with non-negative risk estimator. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  21. Krizhevsky, A.: Learning multiple layers of features from tiny images. Technical report (2009)

    Google Scholar 

  22. Kumar, A., Ma, T., Liang, P.: Understanding self-training for gradual domain adaptation. arXiv preprint arXiv:2002.11361 (2020)

  23. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. In: Advances in Neural Information Processing Systems, vol. 30, pp. 6402–6413. Curran Associates, Inc. (2017)

    Google Scholar 

  24. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. In: Proceedings of the IEEE, pp. 2278–2324 (1998)

    Google Scholar 

  25. Lee, K., Lee, K., Lee, H., Shin, J.: A simple unified framework for detecting out-of-distribution samples and adversarial attacks. In: Advances in Neural Information Processing Systems, vol. 31, pp. 7167–7177 (2018)

    Google Scholar 

  26. Li, M., Soltanolkotabi, M., Oymak, S.: Gradient descent with early stopping is provably robust to label noise for overparameterized neural networks, pp. 4313–4324. Proceedings of Machine Learning Research (2020)

    Google Scholar 

  27. Liang, S., Li, Y., Srikant, R.: Enhancing the reliability of out-of-distribution image detection in neural networks. In: Proceedings of the International Conference on Learning Representations (2018)

    Google Scholar 

  28. Liu, S., Garrepalli, R., Dietterich, T., Fern, A., Hendrycks, D.: Open category detection with PAC guarantees, pp. 3169–3178 (2018)

    Google Scholar 

  29. Lu, A.X., Lu, A.X., Schormann, W., Andrews, D.W., Moses, A.M.: The cells out of sample (COOS) dataset and benchmarks for measuring out-of-sample generalization of image classifiers. arXiv preprint arXiv:1906.07282 (2019)

  30. Malinin, A., Gales, M.: Predictive uncertainty estimation via prior networks. In: Advances in Neural Information Processing Systems, vol. 32, pp. 7047–7058 (2018)

    Google Scholar 

  31. Nalisnick, E., Matsukawa, A., Teh, Y.W., Gorur, D., Lakshminarayanan, B.: Do deep generative models know what they don’t know? In: Proceedings of the International Conference on Learning Representations (2019)

    Google Scholar 

  32. Neal, R.M.: Bayesian Learning for Neural Networks. Springer, Heidelberg (1996). https://doi.org/10.1007/978-1-4612-0745-0

    Book  MATH  Google Scholar 

  33. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural images with unsupervised feature learning. In: NIPS Workshop on Deep Learning and Unsupervised Feature Learning (2011)

    Google Scholar 

  34. Ovadia, Y., et al.: Can you trust your model’s uncertainty? Evaluating predictive uncertainty under dataset shift. In: Advances in Neural Information Processing Systems, vol. 32, pp. 13991–14002 (2019)

    Google Scholar 

  35. du Plessis, M.C., Niu, G., Sugiyama, M.: Analysis of learning from positive and unlabeled data. In: Advances in Neural Information Processing Systems, vol. 27 (2014)

    Google Scholar 

  36. Recht, B., Roelofs, R., Schmidt, L., Shankar, V.: Do CIFAR-10 classifiers generalize to CIFAR-10? arXiv preprint arXiv:1806.00451 (2018)

  37. Recht, B., Roelofs, R., Schmidt, L., Shankar, V.: Do ImageNet classifiers generalize to ImageNet? arXiv preprint arXiv:1902.10811 (2019)

  38. Ren, J., Liu, P.J., Fertig, E., Snoek, J., Poplin, R., Depristo, M., Dillon, J., Lakshminarayanan, B.: Likelihood ratios for out-of-distribution detection. In: Advances in Neural Information Processing Systems, vol. 32, pp. 14707–14718 (2019)

    Google Scholar 

  39. Sastry, C.S., Oore, S.: Detecting out-of-distribution examples with in-distribution examples and Gram matrices. arXiv preprint arXiv:1912.12510 (2019)

  40. Scott, C., Blanchard, G.: Transductive anomaly detection. Technical report (2008)

    Google Scholar 

  41. Shimodaira, H.: Improving predictive inference under covariate shift by weighting the log-likelihood function. J. Stat. Plan. Infer. 90, 227–244 (2000)

    Article  MathSciNet  Google Scholar 

  42. Torralba, A., Fergus, R., Freeman, W.T.: 80 million tiny images: a large data set for nonparametric object and scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 30, 1958–1970 (2008)

    Article  Google Scholar 

  43. Vapnik, V.N.: Statistical Learning Theory. Wiley, Hoboken (1998)

    MATH  Google Scholar 

  44. Wan, Z., Chen, D., Li, Y., Yan, X., Zhang, J., Yu, Y., Liao, J.: Transductive zero-shot learning with visual structure constraint. In: Advances in Neural Information Processing Systems, vol. 32, pp. 9972–9982 (2019)

    Google Scholar 

  45. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms (2017)

    Google Scholar 

  46. Yilmaz, F.F., Heckel, R.: Image recognition from raw labels collected without annotators. arXiv preprint arXiv:1910.09055 (2019)

  47. Yu, Q., Aizawa, K.: Unsupervised out-of-distribution detection by maximum classifier discrepancy. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  48. Zagoruyko, S., Komodakis, N.: Wide residual networks. In: Proceedings of the British Machine Vision Conference (BMVC) (2016)

    Google Scholar 

  49. Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understanding deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530 (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandru Čšifrea .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2720 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Čšifrea, A., Stavarache, E., Yang, F. (2021). Novel Disease Detection Using Ensembles with Regularized Disagreement. In: Sudre, C.H., et al. Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Perinatal Imaging, Placental and Preterm Image Analysis. UNSURE PIPPI 2021 2021. Lecture Notes in Computer Science(), vol 12959. Springer, Cham. https://doi.org/10.1007/978-3-030-87735-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87735-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87734-7

  • Online ISBN: 978-3-030-87735-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics