Skip to main content

Fetal Brain MRI Measurements Using a Deep Learning Landmark Network with Reliability Estimation

  • Conference paper
  • First Online:
Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Perinatal Imaging, Placental and Preterm Image Analysis (UNSURE 2021, PIPPI 2021)

Abstract

We present a new deep learning method, FML, that automatically computes linear measurements in a fetal brain MRI volume. The method is based on landmark detection and estimates their location reliability. It consists of four steps: 1) fetal brain region of interest detection with a two-stage anisotropic U-Net; 2) reference slice selection with a convolutional neural network (CNN); 3) linear measurement computation based on landmarks detection using a novel CNN, FMLNet; 4) measurement reliability estimation using a Gaussian Mixture Model. The advantages of our method are that it does not rely on heuristics to identify the landmarks, that it does not require fetal brain structures segmentation, and that it is robust since it incorporates reliability estimation. We demonstrate our method on three key fetal biometric measurements from fetal brain MRI volumes: Cerebral Biparietal Diameter (CBD), Bone Biparietal Diameter (BBD), and Trans Cerebellum Diameter (TCD). Experimental results on training \((N=164)\) and test \((N=46)\) datasets of fetal MRI volumes yield a 95% confidence interval agreement of 3.70 mm, 2.20 mm and 2.40 mm for CBD, BBD and TCD, in comparison to measurements performed by an expert fetal radiologist. All results were below the interobserver variability, and surpass previously published results. Our method is generic, as it can be directly applied to other linear measurements in volumetric scans and can be used in a clinical setup.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altman, D.G., Bland, J.M.: Measurement in medicine: the analysis of method comparison studies. J. R. Stat. Soc. Ser. D (Stat.) 32(3), 307–317 (1983)

    Google Scholar 

  2. Arthur, D., Vassilvitskii, S.: K-means++: the advantages of careful seeding. In: Proceedings of ACM-SIAM Symposium on Discrete Algorithms (2007)

    Google Scholar 

  3. Avisdris, N., et al.: Automatic linear measurements of the fetal brain with deep neural networks. Int. J. Comput. Assist. Radiol. Surg. (2021). https://doi.org/10.1007/s11548-021-02436-8

  4. Ayhan, M.S., Berens, P.: Test-time data augmentation for estimation of heteroscedastic aleatoric uncertainty in deep neural networks. In: International Conference on Medical Imaging with Deep Learning (2018)

    Google Scholar 

  5. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B 39(1), 1–22 (1977)

    MathSciNet  MATH  Google Scholar 

  6. Dudovitch, G., Link-Sourani, D., Sira, L.B., Miller, E., Bashat, D.B., Joskowicz, L.: Deep learning automatic fetal structures segmentation in MRI scans with few annotated datasets. In: Proceedings of the International Conference on Medical Image Computing and Computer Assisted Intervention (2020)

    Google Scholar 

  7. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the International Conference on Knowledge Discovery and Data Mining (1996)

    Google Scholar 

  8. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: Proceedings of International Conference on Machine Learning (2016)

    Google Scholar 

  9. Garel, C.: MRI of the Fetal Brain. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-642-18747-6

    Book  Google Scholar 

  10. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of International Conference on Computer Vision (2017)

    Google Scholar 

  11. van den Heuvel, T.L.: HC18 challange leaderboard (2021). https://hc18.grand-challenge.org/evaluation/challenge/leaderboard/. Accessed 29 June 2021

  12. van den Heuvel, T.L., de Bruijn, D., de Korte, C.L., van Ginneken, B.: Automated measurement of fetal head circumference using 2d ultrasound images. PloS ONE 13(8), e0200412 (2018)

    Article  Google Scholar 

  13. Khan, N.H., Tegnander, E., Dreier, J.M., Eik-Nes, S., Torp, H., Kiss, G.: Automatic detection and measurement of fetal biparietal diameter and femur length-feasibility on a portable ultrasound device. Open J. Obstetr. Gynecol. 7(3), 334–350 (2017)

    Article  Google Scholar 

  14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of International Conference Learning Representations (2015)

    Google Scholar 

  15. Payer, C., Urschler, M., Bischof, H., Štern, D.: Uncertainty estimation in landmark localization based on Gaussian heatmaps. In: Sudre, C.H., et al. (eds.) UNSURE/GRAIL -2020. LNCS, vol. 12443, pp. 42–51. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60365-6_5

    Chapter  Google Scholar 

  16. Payer, C., štern, D., Bischof, H., Urschler, M.: Integrating spatial configuration into heatmap regression based CNNs for landmark localization. Med. Image Anal. 54, 207–219 (2019)

    Google Scholar 

  17. Prayer, D., et al.: ISUOG practice guidelines: performance of fetal magnetic resonance imaging. Ultrasound Obstetr. Gynecol. 49(5), 671–680 (2017)

    Article  Google Scholar 

  18. Salomon, L., et al.: ISUOG practice guidelines: ultrasound assessment of fetal biometry and growth. Ultrasound Obstetr. Gynecol. 53(6), 715–723 (2019)

    Article  Google Scholar 

  19. Wang, G., Li, W., Aertsen, M., Deprest, J., Ourselin, S., Vercauteren, T.: Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks. Neurocomputing 338, 34–45 (2019)

    Article  Google Scholar 

  20. Wang, J., et al.: Deep high-resolution representation learning for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 43, 3349–3364 (2019)

    Article  Google Scholar 

  21. Yan, K., et al.: MULAN: multitask universal lesion analysis network for joint lesion detection, tagging, and segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 194–202. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_22

    Chapter  Google Scholar 

  22. Zhang, J., Liu, M., Shen, D.: Detecting anatomical landmarks from limited medical imaging data using two-stage task-oriented deep neural networks. IEEE Trans. Pattern Anal. Mach. Intell. 26(10), 4753–4764 (2017)

    MathSciNet  Google Scholar 

Download references

Acknowledgments

This research was supported in part by Kamin Grants 72061 and 72126 from the Israel Innovation Authority.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Netanell Avisdris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Avisdris, N., Ben Bashat, D., Ben-Sira, L., Joskowicz, L. (2021). Fetal Brain MRI Measurements Using a Deep Learning Landmark Network with Reliability Estimation. In: Sudre, C.H., et al. Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Perinatal Imaging, Placental and Preterm Image Analysis. UNSURE PIPPI 2021 2021. Lecture Notes in Computer Science(), vol 12959. Springer, Cham. https://doi.org/10.1007/978-3-030-87735-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87735-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87734-7

  • Online ISBN: 978-3-030-87735-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics