Abstract
This paper focuses on the task of aggregating preference orders over combinatorial domains, where both the individual and the aggregate preference orders are represented as Conditional Preference Networks (CP-nets). We propose intuitive objective functions for finding an optimal aggregate CP-net, as well as corresponding optimal efficient aggregation algorithms for inputs with certain structural properties.
This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Completeness is a limiting condition to be defined in Sect. 3.
References
Airiau, S., Endriss, U., Grandi, U., Porello, D., Uckelman, J.: Aggregating dependency graphs into voting agendas in multi-issue elections. In: IJCAI (2011)
Bachmaier, C., Brandenburg, F., Gleißner, A., Hofmeier, A.: On the hardness of maximum rank aggregation problems. J. Discrete Alg. 31, 2–13 (2015)
Bigot, D., Zanuttini, B., Fargier, H., Mengin, J.: Probabilistic conditional preference networks. arXiv (2013)
Booth, R., Chevaleyre, Y., Lang, J., Mengin, J., Sombattheera, C.: Learning conditionally lexicographic preference relations. In: ECAI, pp. 269–274 (2010)
Boutilier, C., Brafman, R., Domshlak, C., Hoos, H., Poole, D.: CP-nets: a tool for representing and reasoning with conditional ceteris paribus preference statements. J. Artif. Intell. Res. 21, 135–191 (2004)
Brafman, R., Domshlak, C., Shimony, S.: On graphical modeling of preference and importance. J. Artif. Intell. Res. 25, 389–424 (2006)
Brandt, F., Conitzer, V., Endriss, U., Lang, J., Procaccia, A.: Handbook of Computational Social Choice. Cambridge University Press, Cambridge (2016)
Conitzer, V., Lang, J., Xia, L.: Hypercubewise preference aggregation in multi-issue domains. In: IJCAI (2011)
Cornelio, C., Grandi, U., Goldsmith, J., Mattei, N., Rossi, F., Venable, K.: Reasoning with PCP-nets in a multi-agent context. In: AAMAS, pp. 969–977 (2015)
Dinu, L., Manea, F.: An efficient approach for the rank aggregation problem. Theor. Comput. Sci. 359(1–3), 455–461 (2006)
Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank aggregation methods for the web. In: TheWebConf, pp. 613–622. ACM (2001)
Fagin, R., Kumar, R., Mahdian, M., Sivakumar, D., Vee, E.: Comparing partial rankings. SIAM J. Discrete Math. 20(3), 628–648 (2006)
Grandi, U., Luo, H., Maudet, N., Rossi, F.: Aggregating CP-nets with unfeasible outcomes. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 366–381. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10428-7_28
Koriche, F., Zanuttini, B.: Learning conditional preference networks. Artif. Intell. 174(11), 685–703 (2010)
Lang, J.: Vote and aggregation in combinatorial domains with structured preferences. In: IJCAI, vol. 7, pp. 1366–1371 (2007)
Lang, J., Xia, L.: Sequential composition of voting rules in multi-issue domains. Math. Soc. Sci. 57(3), 304–324 (2009)
Li, M., Vo, Q., Kowalczyk, R.: Majority-rule-based preference aggregation on multi-attribute domains with CP-nets. In: AAMAS, pp. 659–666 (2011)
Loreggia, A., Mattei, N., Rossi, F., Venable, K.: A notion of distance between CP-nets. In: AAMAS, pp. 955–963 (2018)
Lukasiewicz, T., Malizia, E.: Complexity results for preference aggregation over (m) CP-nets: Pareto and majority voting. Artif. Intell. 272, 101–142 (2019)
Rossi, F., Venable, K., Walsh, T.: mCP nets: representing and reasoning with preferences of multiple agents. In: AAAI, vol. 4, pp. 729–734 (2004)
Sculley, D.: Rank aggregation for similar items. In: Proceedings of the 2007 SIAM International Conference on Data Mining, pp. 587–592. SIAM (2007)
Xia, L., Conitzer, V., Lang, J.: Voting on multiattribute domains with cyclic preferential dependencies. In: AAAI, vol. 8, pp. 202–207 (2008)
Xia, L., Lang, J., Ying, M.: Sequential voting rules and multiple elections paradoxes. In: Proceedings of TARK, pp. 279–288 (2007)
Xia, L., Lang, J., Ying, M.: Strongly decomposable voting rules on multiattribute domains. In: AAAI, vol. 7, pp. 776–781 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Ali, A.M.H., Hamilton, H.J., Rayner, E., Yang, B., Zilles, S. (2021). Aggregating Preferences Represented by Conditional Preference Networks. In: Fotakis, D., RÃos Insua, D. (eds) Algorithmic Decision Theory. ADT 2021. Lecture Notes in Computer Science(), vol 13023. Springer, Cham. https://doi.org/10.1007/978-3-030-87756-9_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-87756-9_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-87755-2
Online ISBN: 978-3-030-87756-9
eBook Packages: Computer ScienceComputer Science (R0)