Skip to main content

Minimizing and Balancing Envy Among Agents Using Ordered Weighted Average

  • Conference paper
  • First Online:
Algorithmic Decision Theory (ADT 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13023))

Included in the following conference series:

  • 764 Accesses

Abstract

In fair resource allocation, envy freeness (EF) is one of the most interesting fairness criteria as it ensures no agent prefers the bundle of another agent. However, when considering indivisible goods, an EF allocation may not exist. In this paper, we investigate a new relaxation of EF consisting in minimizing the Ordered Weighted Average (OWA) of the envy vector. The idea is to choose the allocation that is fair in the sense of the distribution of the envy among agents. The OWA aggregator is a well-known tool to express fairness in multiagent optimization. In this paper, we focus on fair OWA operators where the weights of the OWA are decreasing. When an EF allocation exists, minimizing OWA envy will return this allocation. However, when no EF allocation exists, one may wonder how fair min OWA envy allocations are.

After defining the model, we show how to formulate the computation of such a min OWA envy allocation as a Mixed Integer Program. Then, we investigate the link between the min OWA allocation and other well-known fairness measures such as max min share and EF up to one good or to any good. Finally, we run some experiments comparing the performances of our approach with MNW (Max Nash Welfare) on several criteria such as the percentage of EF up to one good and any good.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The code is available at https://gitlab.com/MrPyrom/balancing-envy.

References

  1. Aleksandrov, M., Ge, C., Walsh, T.: Fair division minimizing inequality. In: Moura Oliveira, P., Novais, P., Reis, L.P. (eds.) EPIA 2019. LNCS (LNAI), vol. 11805, pp. 593–605. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30244-3_49

    Chapter  Google Scholar 

  2. Amanatidis, G., Birmpas, G., Filos-Ratsikas, A., Hollender, A., Voudouris, A.A.: Maximum nash welfare and other stories about EFX. In: Bessiere, C. (ed.) Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020, pp. 24–30. ijcai.org, Yokohama (2020)

    Google Scholar 

  3. Amanatidis, G., Birmpas, G., Markakis, V.: Comparing approximate relaxations of envy-freeness. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, pp. 42–48. Stockholm, Sweden (2018)

    Google Scholar 

  4. Bansal, N., Sviridenko, M.: The Santa Claus problem. In: Proceedings of the Thirty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’06, pp. 31–40. ACM, New York (2006)

    Google Scholar 

  5. Bouveret, S., Lemaître, M.: Characterizing conflicts in fair division of indivisible goods using a scale of criteria. Auton. Agents Multi-Agent Syst. 30(2), 259–290 (2015). https://doi.org/10.1007/s10458-015-9287-3

    Article  Google Scholar 

  6. Budish, E.: The combinatorial assignment problem: approximate competitive equilibrium from equal incomes. J. Polit. Econ. 119(6), 1061–1103 (2011)

    Article  Google Scholar 

  7. Caragiannis, I., Kurokawa, D., Moulin, H., Procaccia, A.D., Shah, N., Wang, J.: The unreasonable fairness of Maximum Nash Welfare. In: Proceedings of the 2016 ACM Conference on Economics and Computation, EC ’16, pp. 305–322. ACM, New York, NY, USA (2016)

    Google Scholar 

  8. Chaudhury, B.R., Garg, J., Mehlhorn, K.: EFX exists for three agents. In: Proceedings of the 21st ACM Conference on Economics and Computation, EC ’20, pp. 1–19. Association for Computing Machinery, New York (2020)

    Google Scholar 

  9. Chevaleyre, Y., Endriss, U., Maudet, N.: Distributed fair allocation of indivisible goods. Artif. Intell. 242, 1–22 (2017)

    Article  MathSciNet  Google Scholar 

  10. Dickerson, J.P., Goldman, J., Karp, J., Procaccia, A.D., Sandholm, T.: The computational rise and fall of fairness. In: Proceedings of the 28th AAAI Conference on Artificial Intelligence (AAAI-14), pp. 1405–1411. AAAI Press, Québec City (2014)

    Google Scholar 

  11. Endriss, U.: Reduction of economic inequality in combinatorial domains. In: Gini, M.L., Shehory, O., Ito, T., Jonker, C.M. (eds.) International conference on Autonomous Agents and Multi-Agent Systems, AAMAS ’13, Saint Paul, MN, USA, 6–10 May 2013, pp. 175–182. IFAAMAS (2013)

    Google Scholar 

  12. Foley, D.K.: Resource allocation and the public sector. Yale Econ. Essays 7(1), 45–98 (1967)

    Google Scholar 

  13. Goldman, J., Procaccia, A.D.: Spliddit: unleashing fair division algorithms. SIGecom Exch. 13(2), 41–46 (2015)

    Article  Google Scholar 

  14. Heinen, T., Nguyen, N.-T., Rothe, J.: Fairness and rank-weighted utilitarianism in resource allocation. In: Walsh, T. (ed.) ADT 2015. LNCS (LNAI), vol. 9346, pp. 521–536. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23114-3_31

    Chapter  Google Scholar 

  15. Kyropoulou, M., Suksompong, W., Voudouris, A.A.: Almost envy-freeness in group resource allocation. Theor. Comput. Sci. 841, 110–123 (2020)

    Article  MathSciNet  Google Scholar 

  16. Lesca, J., Minoux, M., Perny, P.: The fair OWA one-to-one assignment problem: NP-Hardness and polynomial time special cases. Algorithmica 81(1), 98–123 (2019)

    Article  MathSciNet  Google Scholar 

  17. Lipton, R., Markakis, E., Mossel, E., Saberi, A.: On approximately fair allocations of divisible goods. In: Proceedings of the 5th ACM Conference on Electronic Commerce (EC-04), pp. 125–131. ACM, New York (2004)

    Google Scholar 

  18. Nguyen, T.T., Rothe, J.: How to decrease the degree of envy in allocations of indivisible goods. In: Perny, P., Pirlot, M., Tsoukiàs, A. (eds.) ADT 2013. LNCS (LNAI), vol. 8176, pp. 271–284. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41575-3_21

    Chapter  Google Scholar 

  19. Ogryczak, W., Śliwiński, T.: On solving linear programs with the ordered weighted averaging objective. Eur. J. Oper. Res. 148, 80–91 (2003)

    Article  MathSciNet  Google Scholar 

  20. Perny, P., Spanjaard, O.: An axiomatic approach to robustness in search problems with multiple scenarios. In: Meek, C., Kjærulff, U. (eds.) UAI ’03, Proceedings of the 19th Conference in Uncertainty in Artificial Intelligence, Acapulco, Mexico, 7–10 August 2003, pp. 469–476. Morgan Kaufmann (2003)

    Google Scholar 

  21. Plaut, B., Roughgarden, T.: Almost envy-freeness with general valuations. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’18, pp. 2584–2603. USA (2018)

    Google Scholar 

  22. Rawls, J.: A Theory of Justice. Harvard University Press, Cambridge (1971)

    Google Scholar 

  23. Schneckenburger, S., Dorn, B., Endriss, U.: The Atkinson inequality index in multiagent resource allocation. In: Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems, AAMAS 2017, São Paulo, Brazil, pp. 272–280. ACM (2017)

    Google Scholar 

  24. Weymark, J.A.: Generalized Gini inequality indices. Math. Soc. Sci. 1(4), 409–430 (1981)

    Article  MathSciNet  Google Scholar 

  25. Yager, R.R.: On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Trans. Syst. Man. Cybern. 18, 183–190 (1988)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parham Shams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shams, P., Beynier, A., Bouveret, S., Maudet, N. (2021). Minimizing and Balancing Envy Among Agents Using Ordered Weighted Average. In: Fotakis, D., Ríos Insua, D. (eds) Algorithmic Decision Theory. ADT 2021. Lecture Notes in Computer Science(), vol 13023. Springer, Cham. https://doi.org/10.1007/978-3-030-87756-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87756-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87755-2

  • Online ISBN: 978-3-030-87756-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics