Skip to main content

Automatic Individual Tree Detection from Combination of Aerial Imagery, LiDAR and Environment Context

  • Conference paper
  • First Online:
16th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2021) (SOCO 2021)

Abstract

Geographic Information Systems (GIS) allow analysis based on geo-referenced data. Currently only simple geo-referenced information is available, such as road networks or types of terrain, but there are other geo-referenced data that would be very useful to facilitate decision-making. These data are not collected as they are very hard to generate manually, but remote sensing data and artificial intelligence can be used to accomplish it. This work aims to develop an automatic framework for the extraction of geo-referenced trees, through the union Light Detection and Ranging (LiDAR) point clouds, aerial imagery, and existing GIS environment context. The results of the process are satisfactory, improving in some several areas the LiDAR-based detections using only imagery. However, issues such as false positives need to be corrected in the future. Merging both data sources would allow better results to be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vivas, M., Hernández, J., Corcobado, T., Cubera, E., Solla, A.: Transgenerational induction of resistance to Phytophthora cinnamomi in Holm Oak. Forests 12, 100 (2021). https://doi.org/10.3390/f12010100

    Article  Google Scholar 

  2. Rodríguez-Romero, M., Godoy-Cancho, B., Calha, I.M., Passarinho, J.A., Moreira, A.C.: Allelopathic effects of three herb species on Phytophthora cinnamomi, a pathogen causing severe oak decline in mediterranean wood pastures. Forests 12, 285 (2021). https://doi.org/10.3390/f12030285

    Article  Google Scholar 

  3. Instituto Geográfico Nacional, Centro Nacional de Información Geográfica: Plan Nacional de Ortofotografía Aérea. https://pnoa.ign.es/

  4. Li, W., Guo, Q., Jakubowski, M.K., Kelly, M.: A new method for segmenting individual trees from the LIDAR point cloud. Photogramm. Eng. Remote Sens. 78, 75–84 (2012). https://doi.org/10.14358/PERS.78.1.75

  5. Hamraz, H., Contreras, M.A., Zhang, J.: A robust approach for tree segmentation in deciduous forests using small-footprint airborne LiDAR data. Int. J. Appl. Earth Obs. Geoinf. 52, 532–541 (2016). https://doi.org/10.1016/j.jag.2016.07.006

    Article  Google Scholar 

  6. Jeronimo, S.M.A., Kane, V.R., Churchill, D.J., McGaughey, R.J., Franklin, J.F.: Applying LiDAR individual tree detection to management of structurally diverse forest landscapes. J. Forest. 116, 336–346 (2018). https://doi.org/10.1093/jofore/fvy023

    Article  Google Scholar 

  7. Liu, J., Shen, J., Zhao, R., Xu, S.: Extraction of individual tree crowns from airborne LiDAR data in human settlements. Math. Comput. Model. 58, 524–535 (2013). https://doi.org/10.1016/j.mcm.2011.10.071

    Article  Google Scholar 

  8. Silva, C.A., et al.: Imputation of individual longleaf pine (Pinus palustris Mill.) tree attributes from field and LiDAR data. Can. J. Remote Sens. 42, 554–573 (2016). https://doi.org/10.1080/07038992.2016.1196582

  9. Babahajiani, P., Fan, L., Kämäräinen, J.-K., Gabbouj, M.: Urban 3D segmentation and modelling from street view images and LiDAR point clouds. Mach. Vis. Appl. 28(7), 679–694 (2017). https://doi.org/10.1007/s00138-017-0845-3

    Article  Google Scholar 

  10. Schnell, S., Kleinn, C., Ståhl, G.: Monitoring trees outside forests: a review. Environ. Monit. Assess 187(9), 1–17 (2015). https://doi.org/10.1007/s10661-015-4817-7

    Article  Google Scholar 

  11. Malkoç, E., Rüetschi, M., Ginzler, C., Waser, L.T.: Countrywide mapping of trees outside forests based on remote sensing data in Switzerland. Int. J. Appl. Earth Obs. Geoinf. 100, 102336 (2021). https://doi.org/10.1016/j.jag.2021.102336

  12. Ardila, J.P., Tolpekin, V.A., Bijker, W., Stein, A.: Markov-random-field-based super-resolution mapping for identification of urban trees in VHR images. ISPRS J. Photogramm. Remote Sens. 66, 762–775 (2011). https://doi.org/10.1016/j.isprsjprs.2011.08.002

    Article  Google Scholar 

  13. Lumnitz, S., Devisscher, T., Mayaud, J.R., Radic, V., Coops, N.C., Griess, V.C.: Mapping trees along urban street networks with deep learning and street-level imagery. ISPRS J. Photogramm. Remote Sens. 175, 144–157 (2021). https://doi.org/10.1016/j.isprsjprs.2021.01.016

    Article  Google Scholar 

  14. Laumer, D., Lang, N., van Doorn, N., Mac Aodha, O., Perona, P., Wegner, J.D.: Geocoding of trees from street addresses and street-level images. ISPRS J. Photogramm. Remote Sens. 162, 125–136 (2020). https://doi.org/10.1016/j.isprsjprs.2020.02.001

    Article  Google Scholar 

  15. Wegner, J.D., Branson, S., Hall, D., Schindler, K., Perona, P.: Cataloging public objects using aerial and street-level images — urban trees. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, pp. 6014–6023. IEEE (2016)

    Google Scholar 

  16. Branson, S., Wegner, J.D., Hall, D., Lang, N., Schindler, K., Perona, P.: From google maps to a fine-grained catalog of street trees. ISPRS J. Photogramm. Remote Sens. 135, 13–30 (2018). https://doi.org/10.1016/j.isprsjprs.2017.11.008

    Article  Google Scholar 

  17. Roussel, J.-R., et al.: lidR: An R package for analysis of Airborne Laser Scanning (ALS) data. Remote Sens. Environ. 251, 112061 (2020). https://doi.org/10.1016/j.rse.2020.112061

  18. Zaforemska, A., Xiao, W., Gaulton, R.: Individual tree detection from UAV LIDAR data in a mixed species Woodland. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XLII-2/W13, 657–663 (2019). https://doi.org/10.5194/isprs-archives-XLII-2-W13-657-2019

  19. Weinstein, B.G., Marconi, S., Bohlman, S., Zare, A., White, E.: Individual tree-crown detection in RGB imagery using semi-supervised deep learning neural networks. Remote Sens. 11, 1309 (2019). https://doi.org/10.3390/rs11111309

    Article  Google Scholar 

  20. Weinstein, B.G., Marconi, S., Aubry-Kientz, M., Vincent, G., Senyondo, H., White, E.P.: DeepForest: a Python package for RGB deep learning tree crown delineation. Methods Ecol. Evol. 11, 1743–1751 (2020). https://doi.org/10.1111/2041-210X.13472

    Article  Google Scholar 

  21. Li, K., Wan, G., Cheng, G., Meng, L., Han, J.: Object detection in optical remote sensing images: a survey and a new benchmark. ISPRS J. Photogramm. Remote Sens. 159, 296–307 (2020). https://doi.org/10.1016/j.isprsjprs.2019.11.023

    Article  Google Scholar 

Download references

Acknowledgement

This work was funded by public research projects of Spanish Ministry of Economy and Competitivity (MINECO), reference TEC2017-88048-C2-2-R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Amigo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Amigo, D., Pedroche, D.S., García, J., Molina, J.M. (2022). Automatic Individual Tree Detection from Combination of Aerial Imagery, LiDAR and Environment Context. In: Sanjurjo González, H., Pastor López, I., García Bringas, P., Quintián, H., Corchado, E. (eds) 16th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2021). SOCO 2021. Advances in Intelligent Systems and Computing, vol 1401. Springer, Cham. https://doi.org/10.1007/978-3-030-87869-6_28

Download citation

Publish with us

Policies and ethics