Skip to main content

Foreground Segmentation Improvement by Image Denoising Preprocessing Applied to Noisy Video Sequences

  • Conference paper
  • First Online:
16th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2021) (SOCO 2021)

Abstract

This work deals with the problem of recognizing the relevant pixels in a noisy video sequence (foreground segmentation). Instead of creating a new complex noise-resistant foreground segmentation method, the video frames are preprocessed to remove noise before inputting them to simpler and faster existing foreground segmentation methods. Autoencoder neural networks based on dense and convolutional layers as well as classical methods such as Mean and Median filters are selected as denoising methods in the preprocessing phase. The aim of the experiments is twofold: to verify whether old methods working on preprocessed images can be as effective as recent methods in the state of the art working on non-preprocessed images, and to study whether autoencoders can be adequate for noise removal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bouwmans, T., Javed, S., Sultana, M., Jung, S.K.: Deep neural network concepts for background subtraction: a systematic review and comparative evaluation. Neural Netw. 117, 8–66 (2019)

    Article  Google Scholar 

  2. Braham, M., Piérard, S., Van Droogenbroeck, M.: Semantic background subtraction. In: IEEE International Conference on Image Processing (ICIP), pp. 4552–4556. Beijing, China, September 2017

    Google Scholar 

  3. Chinchor, N.: Muc-4 evaluation metrics. In: Proceedings of the 4th Conference on Message Understanding, MUC4 1992, pp. 22–29. Association for Computational Linguistics, Stroudsburg (1992)

    Google Scholar 

  4. Elgammal, A., Harwood, D., Davis, L.: Non-parametric model for background subtraction. In: Computer Vision (ECCV), pp. 751–767. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45053-X_48

  5. García-González, J., Ortiz-de Lazcano-Lobato, J.M., Luque-Baena, R.M., Molina-Cabello, M.A., López-Rubio, E.: Foreground detection by probabilistic modeling of the features discovered by stacked denoising autoencoders in noisy video sequences. Pattern Recogn. Lett. (2019). https://doi.org/10.1016/j.patrec.2019.06.006

  6. Goyette, N., Jodoin, P.M., Porikli, F., Konrad, J., Ishwar, P., et al.: Changedetection. net: A new change detection benchmark dataset. In: CVPR Workshops, pp. 1–8. No. 2012 (2012)

    Google Scholar 

  7. López-Rubio, E., Luque-Baena, R., Domínguez, E.: Foreground detection in video sequences with probabilistic self-organizing maps. Int. J. Neural Syst. 21(3), 225–246 (2011)

    Article  Google Scholar 

  8. López-Rubio, E., Molina-Cabello, M.A., Luque-Baena, R.M., Domínguez, E.: Foreground detection by competitive learning for varying input distributions. Int. J. Neural Syst. 28(05), 1750056 (2018)

    Article  Google Scholar 

  9. Maddalena, L., Petrosino, A.: The sobs algorithm: what are the limits? In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 21–26 (2012)

    Google Scholar 

  10. Smeulders, A., Chu, D., Cucchiara, R., Calderara, S., Dehghan, A., Shah, M.: Visual tracking: an experimental survey. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1442–1468 (2014)

    Article  Google Scholar 

  11. Sobral, A., Bouwmans, T.: Bgs library: a library framework for algorithm’s evaluation in foreground/background segmentation. In: Background Modeling and Foreground Detection for Video Surveillance. CRC Press, Taylor and Francis (2014)

    Google Scholar 

  12. St-Charles, P., Bilodeau, G., Bergevin, R.: Subsense: a universal change detection method with local adaptive sensitivity. IEEE Trans. Image Process. 24(1), 359–373 (2015)

    Article  MathSciNet  Google Scholar 

  13. St-Charles, P., Bilodeau, G., Bergevin, R.: Universal background subtraction using word consensus models. IEEE Trans. Image Process. 25(10), 4768–4781 (2016)

    Article  MathSciNet  Google Scholar 

  14. Torralba, A., Fergus, R., Freeman, W.: 80 million tiny images: a large data set for nonparametric object and scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 30(11), 1958–1970 (2008)

    Google Scholar 

  15. Wren, C., Azarbayejani, A., Darrell, T., Pentl, A.: Pfinder: real-time tracking of the human body. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 780–785 (1997)

    Google Scholar 

  16. Zhang, Y., Li, X., Zhang, Z., Wu, F., Zhao, L.: Deep learning driven blockwise moving object detection with binary scene modeling. Neurocomputing 168, 454–463 (2015)

    Article  Google Scholar 

  17. Zivkovic, Z.: Improved adaptive gaussian mixture model for background subtraction. In: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, vol. 2, pp. 28–31. IEEE (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge García-Gozález .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

García-Gozález, J., Ortiz-de-Lazcano-Lobato, J.M., Luque-Baena, R.M., López-Rubio, E. (2022). Foreground Segmentation Improvement by Image Denoising Preprocessing Applied to Noisy Video Sequences. In: Sanjurjo González, H., Pastor López, I., García Bringas, P., Quintián, H., Corchado, E. (eds) 16th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2021). SOCO 2021. Advances in Intelligent Systems and Computing, vol 1401. Springer, Cham. https://doi.org/10.1007/978-3-030-87869-6_37

Download citation

Publish with us

Policies and ethics