Abstract
This work deals with the problem of recognizing the relevant pixels in a noisy video sequence (foreground segmentation). Instead of creating a new complex noise-resistant foreground segmentation method, the video frames are preprocessed to remove noise before inputting them to simpler and faster existing foreground segmentation methods. Autoencoder neural networks based on dense and convolutional layers as well as classical methods such as Mean and Median filters are selected as denoising methods in the preprocessing phase. The aim of the experiments is twofold: to verify whether old methods working on preprocessed images can be as effective as recent methods in the state of the art working on non-preprocessed images, and to study whether autoencoders can be adequate for noise removal.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bouwmans, T., Javed, S., Sultana, M., Jung, S.K.: Deep neural network concepts for background subtraction: a systematic review and comparative evaluation. Neural Netw. 117, 8–66 (2019)
Braham, M., Piérard, S., Van Droogenbroeck, M.: Semantic background subtraction. In: IEEE International Conference on Image Processing (ICIP), pp. 4552–4556. Beijing, China, September 2017
Chinchor, N.: Muc-4 evaluation metrics. In: Proceedings of the 4th Conference on Message Understanding, MUC4 1992, pp. 22–29. Association for Computational Linguistics, Stroudsburg (1992)
Elgammal, A., Harwood, D., Davis, L.: Non-parametric model for background subtraction. In: Computer Vision (ECCV), pp. 751–767. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45053-X_48
García-González, J., Ortiz-de Lazcano-Lobato, J.M., Luque-Baena, R.M., Molina-Cabello, M.A., López-Rubio, E.: Foreground detection by probabilistic modeling of the features discovered by stacked denoising autoencoders in noisy video sequences. Pattern Recogn. Lett. (2019). https://doi.org/10.1016/j.patrec.2019.06.006
Goyette, N., Jodoin, P.M., Porikli, F., Konrad, J., Ishwar, P., et al.: Changedetection. net: A new change detection benchmark dataset. In: CVPR Workshops, pp. 1–8. No. 2012 (2012)
López-Rubio, E., Luque-Baena, R., Domínguez, E.: Foreground detection in video sequences with probabilistic self-organizing maps. Int. J. Neural Syst. 21(3), 225–246 (2011)
López-Rubio, E., Molina-Cabello, M.A., Luque-Baena, R.M., Domínguez, E.: Foreground detection by competitive learning for varying input distributions. Int. J. Neural Syst. 28(05), 1750056 (2018)
Maddalena, L., Petrosino, A.: The sobs algorithm: what are the limits? In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 21–26 (2012)
Smeulders, A., Chu, D., Cucchiara, R., Calderara, S., Dehghan, A., Shah, M.: Visual tracking: an experimental survey. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1442–1468 (2014)
Sobral, A., Bouwmans, T.: Bgs library: a library framework for algorithm’s evaluation in foreground/background segmentation. In: Background Modeling and Foreground Detection for Video Surveillance. CRC Press, Taylor and Francis (2014)
St-Charles, P., Bilodeau, G., Bergevin, R.: Subsense: a universal change detection method with local adaptive sensitivity. IEEE Trans. Image Process. 24(1), 359–373 (2015)
St-Charles, P., Bilodeau, G., Bergevin, R.: Universal background subtraction using word consensus models. IEEE Trans. Image Process. 25(10), 4768–4781 (2016)
Torralba, A., Fergus, R., Freeman, W.: 80 million tiny images: a large data set for nonparametric object and scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 30(11), 1958–1970 (2008)
Wren, C., Azarbayejani, A., Darrell, T., Pentl, A.: Pfinder: real-time tracking of the human body. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 780–785 (1997)
Zhang, Y., Li, X., Zhang, Z., Wu, F., Zhao, L.: Deep learning driven blockwise moving object detection with binary scene modeling. Neurocomputing 168, 454–463 (2015)
Zivkovic, Z.: Improved adaptive gaussian mixture model for background subtraction. In: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, vol. 2, pp. 28–31. IEEE (2004)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
García-Gozález, J., Ortiz-de-Lazcano-Lobato, J.M., Luque-Baena, R.M., López-Rubio, E. (2022). Foreground Segmentation Improvement by Image Denoising Preprocessing Applied to Noisy Video Sequences. In: Sanjurjo González, H., Pastor López, I., García Bringas, P., Quintián, H., Corchado, E. (eds) 16th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2021). SOCO 2021. Advances in Intelligent Systems and Computing, vol 1401. Springer, Cham. https://doi.org/10.1007/978-3-030-87869-6_37
Download citation
DOI: https://doi.org/10.1007/978-3-030-87869-6_37
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-87868-9
Online ISBN: 978-3-030-87869-6
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)