Abstract
Automated Guided Vehicles (AGVs) are essential to settle the Industry 4.0 paradigm, along with other robotic systems. These autonomous vehicles are usually controlled with a PID controller. But the accuracy of the path following strongly depends on the PID performance, and hence, of the fine tuning of the regulator parameters. Even more, this adjustment also depends on the system dynamics. Thus, in this work the use of a Soft Computing evolutive technique, genetic algorithms (GA), is proposed in order to obtain the optimal parameters of a PID regulator. The dynamic model of the AGV and of the guiding sensor are used. Different trajectories have been tested. A qualitative analysis of different system configurations using this optimization procedure is carried out. Some conclusions regarding the sensor design and the inner power train system are obtained. They may be useful for robotic engineers and companies manufacturing this kind of industrial autonomous vehicles.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Sierra-García, J.E., Santos, M.: Mechatronic modelling of industrial AGVs: a complex system architecture. In: Complexity 2020 (2020)
Sanchez, R., Sierra-García, J.E., Santos, M.: Modelado de un AGV híbrido triciclo-diferencial. In: Revista Iberoamericana de Automática e Informática Industrial (2021)
Espinosa, F., Santos, C., Sierra-García, J.E.: Transporte multi-AGV de una carga: estado del arte y propuesta centralizada. Revista Iberoamericana de Automática e Informática industrial 18(1), 82–91 (2021)
Hidalgo, C.E., Marcano, M., Fernández, G., Pérez, J.M.: Cooperative maneuvers applied to automated vehicles in real and virtual environments. Revista Iberoamericana de Automática e Informática Industrial 17(1), 56–65 (2020). https://doi.org/10.4995/riai.2019.11155
Lattarulo, R., Matute, J.A., Pérez, J., Gomez Garay, V.: Dual-modular architecture for developing and validation of decision and control modules for automated vehicles. Revista Iberoamericana de Automática e Informática Industrial 17(1), 66–75 (2020). https://doi.org/10.4995/riai.2019.9542
Sierra-García, J.E., Santos, M.: Control of Industrial AGV Based on Reinforcement Learning. In: International Workshop on Soft Computing Models in Industrial and Environmental Applications, pp. 647–656. Springer, Cham (2020)
García, J.M., Valero, A., Bohórquez, A.: Efecto de la suspensión en la estabilidad al vuelco y direccionamiento de robots moviéndose sobre discontinuidades de terreno. Revista Iberoamericana de Automática e Informática industrial 17(2), 202–214 (2020)
Niestrój, R., Rogala, T., Skarka, W.: An energy consumption model for designing an AGV energy storage system with a PEMFC stack. Energies 13(13), 3435 (2020)
Smieszek, M., Dobrzanska, M., Dobrzanski, P.: Measurement of wheel radius in an automated guided vehicle. Appl. Sci. 10(16), 5490 (2020)
Wu, X., Sun, C., Zou, T., Xiao, H., Wang, L., Zhai, J.: Intelligent path recognition against image noises for vision guidance of automated guided vehicles in a complex workspace. Appl. Sci. 9(19), 4108 (2019)
Larrazabal, J.M., Peñas, M.S.: Intelligent rudder control of an unmanned surface vessel. Expert Syst. Appl. 55, 106–117 (2016)
Zotes, F.A., Penas, M.S.: Multi-criteria genetic optimisation of the manoeuvres of a two-stage launcher. Inf. Sci. 180(6), 896–910 (2010)
Lara, M., Garrido, J., Ruz, M.L., Vázquez, F.: Adaptive pitch controller of a large-scale wind turbine using multi-objective optimization. Appl. Sci. 11(6), 2844 (2021)
Alouache, A., Wu, Q.: Genetic algorithms for trajectory tracking of mobile robot based on PID controller. In: 2018 IEEE 14th International Conference on Intelligent Computer Communication and Processing (ICCP), pp. 237–241. IEEE (2018)
Sierra-García, J.E., Santos, M.: Switched learning adaptive neuro-control strategy. Neurocomputing 452, 450–464 (2021)
Santos, M., Cantos, A.J.: Classification of plasma signals by genetic algorithms. Fusion Sci. Technol. 58(2), 706–713 (2010)
Santos, M.: An applied approach of intelligent control. Revista Iberoamericana de Automática e Informática Industrial 8(4), 283–296 (2011)
Acknowledgement
This work was partially supported by the Spanish Ministry of Science, Innovation and Universities under MCI/AEI/FEDER Project number RTI2018–094902-B-C21.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Abajo, M.R., Sierra-García, J.E., Santos, M. (2022). Evolutive Tuning Optimization of a PID Controller for Autonomous Path-Following Robot. In: Sanjurjo González, H., Pastor López, I., García Bringas, P., Quintián, H., Corchado, E. (eds) 16th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2021). SOCO 2021. Advances in Intelligent Systems and Computing, vol 1401. Springer, Cham. https://doi.org/10.1007/978-3-030-87869-6_43
Download citation
DOI: https://doi.org/10.1007/978-3-030-87869-6_43
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-87868-9
Online ISBN: 978-3-030-87869-6
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)