Skip to main content

Development and Research of Quantum Models for Image Conversion

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2021)

Abstract

Quantum imaging is a new trend that is showing promising results as a powerful addition to the arsenal of imaging techniques. Per-pixel representation of an image using classical information requires a huge amount of computational resources. Hence, exploring techniques for representing images in a different information paradigm is important. This paper describes the variety of options for representing images in quantum information. Image processing is a well-established area of computer science with many applications in today’s world such as face recognition, image analysis, image segmentation and noise reduction using a wide range of techniques. A promising first step was the exponentially efficient implementation of the Fourier transform in quantum computers versus the FFT in classical computers. In addition, images encoded in quantum information can obey unique quantum properties such as superposition or entanglement. The laws of quantum mechanics can reduce the required resources for some tasks by many orders of magnitude if the image data is encoded in the quantum state of a suitable physical system. The aim of this work is to develop and study quantum models of image transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guzik, V., Gushanskiy, S., Polenov, M., Potapov, V.: The computational structure of the quantum computer simulator and its performance evaluation. In: Silhavy, Radek (ed.) CSOC2018 2018. AISC, vol. 763, pp. 198–207. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-91186-1_21

    Chapter  Google Scholar 

  2. Samoylov, A., Gushanskiy, S., Polenov, M., Potapov, V.: The quantum computer model structure and estimation of the quantum algorithms complexity. In: Silhavy, R., Silhavy, P., Prokopova, Z. (eds.) CoMeSySo 2018. AISC, vol. 859, pp. 307–315. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-00211-4_27

    Chapter  Google Scholar 

  3. Beach, G., Lomont, C., Cohen, C.:Quantum image processing (QuIP). Proceedings of the 32nd Applied Imagery Pattern Recognition Workshop, pp. 39–40 (2003). https://doi.org/10.1109/AIPR.2003.1284246. ISBN 0-7695-2029-4

  4. Yan, F., Iliyasu, A.M., Venegas-Andraca, S.E.: A survey of quantum image representations. Quant. Inf. Process. 15(1), 1–35 (2015). https://doi.org/10.1007/s11128-015-1195-6

    Article  MathSciNet  MATH  Google Scholar 

  5. Boneh, D., Zhandry, M.: Quantum-secure message authentication codes. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 592–608. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_35

    Chapter  Google Scholar 

  6. Potapov, V., Gushanskiy, S., Polenov, M.: Optimization of models of quantum computers using low-level quantum schemes and variability of cores and nodes. In: Silhavy, R. (ed.) CSOC 2019. AISC, vol. 986, pp. 264–273. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19813-8_27

    Chapter  Google Scholar 

  7. Kleppner, D., Kolenkow, R.: An Introduction to Mechanics, 2nd edn, 49 p. Cambridge University Press, Cambridge (2014)

    Google Scholar 

  8. Venegas-Andraca, S.E.:. Quantum Image Processing. Springer, Singapore (2020). ISBN 978-9813293304

    Google Scholar 

  9. Sukachev, D.D., Sipahigil, A., Lukin, M.D.: Silicon-vacancy spin qubit in diamond: a quantum memory exceeding 10 ms with single-shot state readout. Phys. Rev. Lett. 199 (2017)

    Google Scholar 

  10. Lukin, M.D.: Probing many-body dynamics on a 51-atom quantum simulator. Nature 551 (2013)

    Google Scholar 

  11. Potapov, V., Gushansky, S., Guzik, V., Polenov, M.: Architecture and software implementation of a quantum computer model. In: Silhavy, R., Senkerik, R., Oplatkova, Z.K., Silhavy, P., Prokopova, Z. (eds.) Software Engineering Perspectives and Application in Intelligent Systems. AISC, vol. 465, pp. 59–68. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33622-0_6

    Chapter  Google Scholar 

  12. Raedt, K.D., et al.: Massively parallel quantum computer simulator. Comput. Phys. Commun. 176, 121–136 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

The research was funded by the Russian Foundation for Basic Research according to the project № 19-07-01082.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Potapov Viktor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alexey, S., Sergey, G., Viktor, P. (2021). Development and Research of Quantum Models for Image Conversion. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2021. Lecture Notes in Computer Science(), vol 12855. Springer, Cham. https://doi.org/10.1007/978-3-030-87897-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87897-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87896-2

  • Online ISBN: 978-3-030-87897-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics