Skip to main content

A Study of Direct and Indirect Encoding in Phenotype-Genotype Relationships

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2021)

Abstract

This paper examines phenotype and genotype mappings that are biologically inspired. These types of coding are used in evolutionary computation. Direct and indirect encoding are studied. The determination of genotype and phenotype relationships and the connection to genetic algorithms, evolutionary programming and biology are examined in the light of newer advances. The NEAT and HyperNEAT algorithms are applied to the 2D Walker [41] problem of an agent learning how to walk. Results and findings are discussed, and conclusions are given. Indirect coding did not improve the situation. This paper shows that indirect coding is not useful in every situation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Available at https://sharpneat.sourceforge.io/.

References

  1. Van Driel, M.A., Bruggeman, J., Vriend, G., Brunner, H.G., Leunissen, J.A.: A text-mining analysis of the human phenome. Eur. J. Hum. Genet. 14, 535 (2006)

    Article  Google Scholar 

  2. Meli, C.: Using a GA to determine genotype and phenotype relationships. In: European Simulation and Modelling Conference 2007. Westin Dragonara, St Julians (2007)

    Google Scholar 

  3. Fogel, D.B.: Phenotypes, genotypes, and operators in evolutionary computation. In: Proceedings of the 1995 IEEE International Conference on Evolutionary Computation (ICEC 1995), pp. 193–198 (1995)

    Google Scholar 

  4. Galushkin, A.I.: Neural Networks Theory. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-48125-6

  5. Hussain, T.S., Browse, R.A.: Evolving neural networks using attribute grammars. In: 2000 IEEE Symposium on Combinations of Evolutionary Computation and Neural Networks. Proceedings of the First IEEE Symposium on Combinations of Evolutionary Computation and Neural Networks (Cat. No. 00), pp. 37–42 (2000). https://doi.org/10.1109/ECNN.2000.886217

  6. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley (1989)

    Google Scholar 

  7. Hartmann, M., Haddow, P.C., Lehre, P.K.: The genotypic complexity of evolved fault-tolerant and noise-robust circuits. Biosystems. 87, 224–232 (2007)

    Article  Google Scholar 

  8. Montana, D.J., Davis, L.: Training feedforward neural networks using genetic algorithms. In: IJCAI, pp. 762–767 (1989)

    Google Scholar 

  9. Kitano, H.: Designing neural networks using genetic algorithms with graph generation system. Complex Syst. 4, 461–476 (1990)

    MATH  Google Scholar 

  10. Gauci, J., Stanley, K.O.: Autonomous evolution of topographic regularities in artificial neural networks. Neural Comput. 22, 1860–1898 (2010)

    Article  Google Scholar 

  11. Jacob, C.: Genetic L-system programming. In: Davidor, Y., Schwefel, H.-P., Männer, R. (eds.) PPSN 1994. LNCS, vol. 866, pp. 333–343. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58484-6_277

    Chapter  Google Scholar 

  12. Zhao, Y., Deng, B., Wang, Z.: Analysis and study of perceptron to solve XOR problem. In: The 2nd International Workshop on Autonomous Decentralized System, 2002, pp. 168–173 (2002) https://doi.org/10.1109/IWADS.2002.1194667

  13. Pigliucci, M.: Genotype-phenotype mapping and the end of the ‘genes as blueprint’ metaphor. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 557–566 (2010)

    Google Scholar 

  14. Stanley, K.O., Miikkulainen, R.: A taxonomy for artificial embryogeny. Artif. Life. 9, 93–130 (2003)

    Article  Google Scholar 

  15. Clune, J., Stanley, K.O., Pennock, R.T., Ofria, C.: On the performance of indirect encoding across the continuum of regularity. IEEE Trans. Evol. Comput. 15, 346–367 (2011)

    Article  Google Scholar 

  16. Harding, S., Miller, J.F.: A comparison between developmental and direct encodings. Presented at the GECCO 2006 (Updated version) (2006)

    Google Scholar 

  17. Clune, J., Lipson, H.: Evolving three-dimensional objects with a generative encoding inspired by developmental biology. In: ECAL, pp. 141–148 (2011)

    Google Scholar 

  18. Meli, C.: Millipede, an extended representation for genetic algorithms. In: International Journal of Computer Theory and Engineering. IACSIT PRESS, Rome, Italy (2013)

    Google Scholar 

  19. Lindenmayer, A.: Mathematical models for cellular interactions in development. I. Filaments with one-sided inputs. J. Theor. Biol. 18, 280–299 (1968)

    Article  Google Scholar 

  20. Kwasnicka, H., Paradowski, M.: Efficiency aspects of neural network architecture evolution using direct and indirect encoding. In: Ribeiro, B., Albrecht, R.F., Dobnikar, A., Pearson, D.W., Steele, N.C. (eds.) Adaptive and Natural Computing Algorithms, pp. 405–408. Springer, Vienna (2005). https://doi.org/10.1007/3-211-27389-1_98

  21. da Silva, A.S., Mei, Y., Ma, H., Zhang, M.: Evolutionary computation for automatic web service composition: an indirect representation approach. J. Heuristics. 24, 425–456 (2018)

    Article  Google Scholar 

  22. Hotz, P.E.: Comparing direct and developmental encoding schemes in artificial evolution: a case study in evolving lens shapes. In: Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No. 04TH8753), vol. 1, pp. 752–757 (2004). https://doi.org/10.1109/CEC.2004.1330934

  23. Gillespie, L.E., Gonzalez, G.R., Schrum, J.: Comparing direct and indirect encodings using both raw and hand-designed features in tetris. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 179–186. Association for Computing Machinery, Berlin (2017). https://doi.org/10.1145/3071178.3071195

  24. Kicinger, R., Arciszewski, T., De Jong, K.: Evolutionary computation and structural design: a survey of the state-of-the-art. Comput. Struct. 83, 1943–1978 (2005)

    Article  Google Scholar 

  25. Caruana, R.A., Schaffer, J.D.: Representation and hidden bias: Gray vs. binary coding for genetic algorithms. In: Machine Learning Proceedings 1988, pp. 153–161. Elsevier, Amsterdam (1988)

    Chapter  Google Scholar 

  26. Miller, J.F., Thomson, P.: Cartesian genetic programming. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 121–132. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-540-46239-2_9

    Chapter  Google Scholar 

  27. Ryan, C., Collins, J.J., Neill, M.O.: Grammatical evolution: evolving programs for an arbitrary language. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C. (eds.) EuroGP 1998. LNCS, vol. 1391, pp. 83–96. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055930

    Chapter  Google Scholar 

  28. Miorandi, D., Yamamoto, L., De Pellegrini, F.: A survey of evolutionary and embryogenic approaches to autonomic networking. Comput. Netw. 54, 944–959 (2010). https://doi.org/10.1016/j.comnet.2009.08.021

    Article  MATH  Google Scholar 

  29. Ronald, S.: Robust encodings in genetic algorithms: a survey of encoding issues. Presented at the (1997). https://doi.org/10.1109/ICEC.1997.592265

  30. Della Croce, F., Tadei, R., Volta, G.: A Genetic algorithm for the job shop problem. Comput. Oper. Res. 22, 15–24 (1995). https://doi.org/10.1016/0305-0548(93)E0015-L

    Article  MATH  Google Scholar 

  31. Brucherseifer, E., Bechtel, P., Freyer, S., Marenbach, P.: An indirect block-oriented representation for genetic programming. In: Miller, J., Tomassini, M., Lanzi, P.L., Ryan, C., Tettamanzi, A.G.B., Langdon, W.B. (eds.) EuroGP 2001. LNCS, vol. 2038, pp. 268–279. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45355-5_21

    Chapter  MATH  Google Scholar 

  32. Clune, J., Beckmann, B.E., Ofria, C., Pennock, R.T.: Evolving coordinated quadruped gaits with the HyperNEAT generative encoding. In: 2009 IEEE Congress on Evolutionary Computation, pp. 2764–2771 (2009). https://doi.org/10.1109/CEC.2009.4983289

  33. D’Ambrosio, D.B., Stanley, K.O.: Scalable multiagent learning through indirect encoding of policy geometry. Evol. Intell. 6, 1–26 (2013). https://doi.org/10.1007/s12065-012-0086-3

    Article  Google Scholar 

  34. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10, 99–127 (2002). https://doi.org/10.1162/106365602320169811

    Article  Google Scholar 

  35. Aickelin, U.: An indirect genetic algorithm for set covering problems. J. Oper. Res. Soc. 53, 1118–1126 (2002)

    Article  Google Scholar 

  36. Aickelin, U., Dowsland, K.: An indirect genetic algorithm for a nurse scheduling problem. Comput. Oper. Res. 31, 761–778 (2008). https://doi.org/10.1016/S0305-0548(03)00034-0

    Article  MATH  Google Scholar 

  37. Haj-Rachid, M., Ramdane-Cherif, W., Chatonnay, P., Bloch, C.: Comparing the performance of genetic operators for the vehicle routing problem. IFAC Proc. 43, 313–319 (2010). https://doi.org/10.3182/20100908-3-PT-3007.00068

    Article  Google Scholar 

  38. Thangavelautham, J., D’Eleuterio, G.M.T.: A coarse-coding framework for a gene-regulatory-based artificial neural tissue. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds.) ECAL 2005. LNCS (LNAI), vol. 3630, pp. 67–77. Springer, Heidelberg (2005). https://doi.org/10.1007/11553090_8

    Chapter  Google Scholar 

  39. Risi, S., Stanley, K.O.: Indirectly encoding neural plasticity as a pattern of local rules. In: Doncieux, S., Girard, B., Guillot, A., Hallam, J., Meyer, J.-A., Mouret, J.-B. (eds.) SAB 2010. LNCS (LNAI), vol. 6226, pp. 533–543. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15193-4_50

    Chapter  Google Scholar 

  40. Soltoggio, A., Bullinaria, J.A., Mattiussi, C., Dürr, P., Floreano, D.: Evolutionary advantages of neuromodulated plasticity in dynamic, reward-based scenarios. In: Proceedings of the 11th International Conference on Artificial Life (Alife XI), pp. 569–576. MIT Press (2008)

    Google Scholar 

  41. Zhang, S., Zaiane, O.R.: Comparing deep reinforcement learning and evolutionary methods in continuous control (2017). https://arxiv.org/abs/1712.00006

Download references

Acknowledgments

This work was supported by financial support of research project NPU I No. MSMT-7778/2014 by the Ministry of Education of the Czech Republic, by the European Regional Development Fund under the Project CEBIA-Tech No. CZ.1.05/2.1.00/03.0089 and by resources of A.I. Lab research group at Faculty of Applied Informatics, Tomas Bata University in Zlin (ailab.fai.utb.cz).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clyde Meli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Meli, C., Nezval, V., Oplatkova, Z.K., Buttigieg, V., Staines, A.S. (2021). A Study of Direct and Indirect Encoding in Phenotype-Genotype Relationships. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2021. Lecture Notes in Computer Science(), vol 12855. Springer, Cham. https://doi.org/10.1007/978-3-030-87897-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87897-9_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87896-2

  • Online ISBN: 978-3-030-87897-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics