Abstract
In this paper, a new approach to face description is proposed. The linguistic description of human faces in digital pictures is generated within a framework of fuzzy granulation. Fuzzy relations and fuzzy relational rules are applied in order to create the image description. By use of type-2 fuzzy sets, fuzzy relations, and fuzzy IF-THEN rules, an image recognition system can infer and explain its decision. Such a system can retrieve an image, recognize, and classify – especially a human face – based on the linguistic description.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2(1), 1–127 (2009)
Bologna, G., Hayashi, Y.: Characterization of symbolic rules embedded in deep DIMLP networks: a challange to transparency of deep learning. J. Artif. Intell. Soft Comput. Res. 7(4), 265–286 (2017)
Cohen, M.S.: Table of average head dimensions based on data from Wikipedia Anthropometry pages. File:AvgHeadSizes.png. Wikipedia (2017). commons.wikimedia.org/wiki/File:AvgHeadSizes.png
Dutta, D., Sen, M., Deshpande, A.: Generalized type-2 fuzzy equivalence relation. In: Proceedings of the National Academy of Sciences. India Sect. A Phys. Sci. 107, 2411–2502 (2020)
Grycuk, R., Najgebauer, P., Kordos, M., Scherer, M.M., Marchlewska, A.: Fast image index for database management engines. J. Artif. Intell. Soft Comput. Res. 10(2), 113–123 (2020)
Grycuk, R., Wojciechowski, A., Wei, W., Siwocha, A.: Detecting visual objects by edge crawling. J. Artif. Intell. Soft Comput. Res. 10(3), 223–237 (2020)
Gunning, D., Aha, D.: DARPA’s explainable artificial intelligence (XAI) program. AI Mag. 40(2), 44–58 (2019)
Guo, G., Zhang, N.: A survey on deep learning based face recognition. Comput. Vis. Image Underst. 189, 102805 (2019)
Iwamoto, H., Ralescu, A.: Towards a multimedia model-based image retrieval system using fuzzy logic. In: Proceedings of SPIE, vol. 1827, pp. 177–185. Model-based Vision (1992)
Kaczmarek, P., Pedrycz, W., Reformat, M., Akhoundi, E.: A study of facial regions saliency: a fuzzy measure approach. Soft Comput. 18, 379–391 (2014)
Kaczmarek, P., Kiersztyn, A., Rutka, P., Pedrycz, W.: Linguistic descriptors in face recognition: a literature survey and the perspectives of future development. In: Proceedings of SPA 2015 (Signal Processing: Algorithms, Architectures, Arrangements, and Applications), Poznań. Poland, pp. 98–103 (2015)
Kaczmarek, P., Pedrycz, W., Kiersztyn, A., Rutka, P.: A study in facial features saliency in face recognition: an analytic hierarchy process approach. Soft Comput. 21, 703–7517 (2016). Springer
Karczmarek, P., Kiersztyn, A., Pedrycz, W., Dolecki, M.: Linguistic descriptors and analytic hierarchy process in face recognition realized by humans. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS (LNAI), vol. 9692, pp. 584–596. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39378-0_50
Karczmarek, P., Kiersztyn, A., Pedrycz, W.: An evaluation of fuzzy measure for face recognition. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI), vol. 10245, pp. 668–676. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59063-9_60
Kiersztyn, A., Kaczmarek, P., Dolecki, M., Pedrycz, W.: Linguistic descriptors and fuzzy sets in face recognition realized by humans. In: Proceedings of 2016 IEEE International Conference on Fuzzy Systems (FUZZ), pp. 1120–1126 (2016)
Korytkowski, M., Senkerik, R., Scherer, M.M., Angryk, R.A., Kordos, M., Siwocha, A.: Efficient image retrieval by fuzzy rules from boosting and metaheuristic. J. Artif. Intell. Soft Comput. Res. 10(1), 57–69 (2020)
Kurach, D., Rutkowska, D., Rakus-Andersson, E.: Face classification based on linguistic description of facial features. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS (LNAI), vol. 8468, pp. 155–166. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07176-3_14
Liu, H., Gegov, A., Cocea, M.: Rule based networks: an efficient and interpretable representation of computational models. J. Artif. Intell. Soft Comput. Res. 7(2), 111–123 (2017)
Medlej, J.: Human anatomy fundamentals. Design & Illustration. https://design.tutsplus.com
Niewiadomski, A., Kacprowicz, M.: Type-2 fuzzy logic systems in applications: managing data in selective catalytic reduction for air pollution prevention. J. Artif. Intell. Soft Comput. Res. 11(2), 85–97 (2021)
Pawlak, M., Panesar, G.S., Korytkowski, M.: A novel method for invariant image reconstruction. J. Artif. Intell. Soft Comput. Res. 11(1), 69–80 (2021)
Pierrard, R., Poli, J-P., Hudelot, C.: Learning fuzzy relations and properties for explainable Artificial Intelligence. In: 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Rio de Janeiro, Brasil (2018)
Riid, A., Preden, J.-S.: Design of fuzzy rule-based classifiers through granulation and consolidation. J. Artif. Intell. Soft Comput. Res. 7(2), 137–147 (2017)
Rutkowska, D.: Neuro-Fuzzy Architectures and Hybrid Learning, vol. 85. Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-7908-1802-4
Rutkowska, D.: An expert system for human personality characteristics recognition. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010. LNCS (LNAI), vol. 6113, pp. 665–672. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13208-7_83
Rutkowska, D., Kurach, D., Rakus-Andersson, E.: Face recognition with explanation by fuzzy rules and linguistic description. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2020. LNCS (LNAI), vol. 12415, pp. 338–350. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61401-0_32
Setiono, R.: Extracting rules from neural networks by prunning and hidden-unit splitting. Neural Comput. 9, 205–225 (1997)
Singh, H.: Practical Machine Learning and Image Processing: For Facial Recognition, Object Detection, and Pattern Recognition Using Python. Apress, India (2019)
Starczewski, J.T., Goetzen, P., Napoli, C.: Triangular fuzzy-rough set based fuzzification on fuzzy rule-based systems. J. Artif. Intell. Soft Comput. Res. 10(4), 271–285 (2020)
Yager, R.: The representation of fuzzy relational production rules. Appl. Intell. 1(1), 35–42 (1991)
Yager, R.R., Filev, D.P.: Relational partitioning of fuzzy rules. Fuzzy Sets Syst. 80(1), 57–69 (1996)
Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)
Zadeh, L.A.: Similarity relation and fuzzy ordering. Inf. Sci. 3, 177–200 (1971)
Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning-1. Inf. Sci. 8, 199–249 (1975)
Zadeh, L.A.: Fuzzy logic = computing with words. IEEE Trans. Fuzzy Syst. 4, 103–111 (1996)
Zadeh, L.A.: Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets Syst. 90, 111–127 (1997)
Żurada, J.M.: Introduction to Artificial Neural Systems. West Publishing Company, St. Paul (1992)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Rutkowska, D., Kurach, D., Rakus-Andersson, E. (2021). Fuzzy Granulation Approach to Face Recognition. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2021. Lecture Notes in Computer Science(), vol 12855. Springer, Cham. https://doi.org/10.1007/978-3-030-87897-9_44
Download citation
DOI: https://doi.org/10.1007/978-3-030-87897-9_44
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-87896-2
Online ISBN: 978-3-030-87897-9
eBook Packages: Computer ScienceComputer Science (R0)