Skip to main content

RGB-D Odometry for Autonomous Lawn Mowing

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2021)

Abstract

Localization for outdoor mobile robots is crucial to accomplish complex tasks in difficult environments. One of the examples is an autonomous mower operating in various lawns placed in parks, airports, home gardens and many more. To ensure all navigation algorithms’ requirements are met, first accurate estimation of current position and orientation needs to be found. Scientists proposed many approaches using encoders, RADARs, LIDARs or vision/depth cameras. However, this is the first attempt to investigate odometry performance for autonomous lawn mowing using RGB-D cameras. The contribution is twofold. First, several odometry algorithms in autonomous mower environments were examined in terms of localization accuracy and execution time. Secondly, a new dataset was collected containing sequences from a city park and home lawn. The dataset contains aligned color and depth images. This study aimed to extend knowledge about RGB-D odometry and analyze how RGB-D cameras may be used in agricultural robots, where the environment is often an open space without many feature points or distinctive objects used in the odometry algorithms.

This work was supported by The National Centre for Research and Development [grant number POIR.01.01.01-00-1069/18].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aguiar, A.S., dos Santos, F.N., Cunha, J.B., Sobreira, H., Sousa, A.J.: Localization and mapping for robots in agriculture and forestry: a survey. Robotics 9(4), 97 (2020). https://doi.org/10.3390/robotics9040097

    Article  Google Scholar 

  2. Bishop, G., Welch, G., et al.: An introduction to the Kalman filter. Proc. SIGGRAPH, Course 8(27599–23175), 41 (2001)

    Google Scholar 

  3. Bradski, G.: The openCV library. Dr. Dobb’s J. Softw. Tools 25(11), 120–123 (2000)

    Google Scholar 

  4. Cho, B.S., sung Moon, W., Seo, W.J., Baek, K.R.: A dead reckoning localization system for mobile robots using inertial sensors and wheel revolution encoding. J. Mech. Sci. Technol. 25(11), 2907–2917 (2011). https://doi.org/10.1007/s12206-011-0805-1, http://www.springerlink.com/content/1738-494x

  5. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the KITTI vision benchmark suite. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, IEEE June 2012. https://doi.org/10.1109/cvpr.2012.6248074

  6. Howard, A.: Real-time stereo visual odometry for autonomous ground vehicles. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3946–3952 (2008). https://doi.org/10.1109/IROS.2008.4651147

  7. Jurišica, L., Duchoň, F., Kaštan, D., Babinec, A.: High precision GNSS guidance for field mobile robots. Int. J. Adv. Rob. Syst. 9(5), 169 (2012). https://doi.org/10.5772/52554

    Article  Google Scholar 

  8. Keselman, L., Woodfill, J.I., Grunnet-Jepsen, A., Bhowmik, A.: Intel(R) realsense(TM) stereoscopic depth cameras. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1267–1276 (2017). https://doi.org/10.1109/CVPRW.2017.167

  9. Lingemann, K., Nüchter, A., Hertzberg, J., Surmann, H.: High-speed laser localization for mobile robots. Robo. Auton. Syst. 51(4), 275–296 (2005) https://doi.org/10.1016/j.robot.2005.02.004, http://www.sciencedirect.com/science/article/pii/S0921889005000254

  10. Newcombe, R.A., et al.: Kinectfusion: real-time dense surface mapping and tracking. In: 2011 10th IEEE International Symposium on Mixed and Augmented Reality, pp. 127–136 (2011). https://doi.org/10.1109/ISMAR.2011.6092378

  11. Nister, D., Naroditsky, O., Bergen, J.: Visual odometry. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2004, vol. 1, pp. I-I (2004). https://doi.org/10.1109/CVPR.2004.1315094

  12. Nizette, B., Tridgell, A., Yu, C.: Low-cost differential GPS for field robotics. In: 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 1521–1526 (2014). https://doi.org/10.1109/AIM.2014.6878299

  13. Scaramuzza, D., Fraundorfer, F.: Visual odometry [tutorial]. IEEE Rob. Autom. Mag. 18(4), 80–92 (2011). https://doi.org/10.1109/MRA.2011.943233

    Article  Google Scholar 

  14. Silva, Bruno M. F.., Gonçalves, Luiz M. G..: Visual odometry and mapping for indoor environments using RGB-D cameras. In: Osório, Fernando S.., Wolf, Denis Fernando, Castelo Branco, Kalinka, Grassi, Valdir, Becker, Marcelo, Romero, Roseli A. Francelin. (eds.) LARS/Robocontrol/SBR -2014. CCIS, vol. 507, pp. 16–31. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48134-9_2

    Chapter  Google Scholar 

  15. Steinbrücker, F., Sturm, J., Cremers, D.: Real-time visual odometry from dense RGB-D images. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 719–722 (2011). https://doi.org/10.1109/ICCVW.2011.6130321

  16. Strack, Andreas, Ferrein, Alexander, Lakemeyer, Gerhard: Laser-based localization with sparse landmarks. In: Bredenfeld, Ansgar, Jacoff, Adam, Noda, Itsuki, Takahashi, Yasutake (eds.) RoboCup 2005. LNCS (LNAI), vol. 4020, pp. 569–576. Springer, Heidelberg (2006). https://doi.org/10.1007/11780519_55

    Chapter  Google Scholar 

  17. Szrek, J., Trybała, P., Góralczyk, M., Michalak, A., Ziȩtek, B., Zimroz, R.: Accuracy evaluation of selected mobile inspection robot localization techniques in a GNSS-denied environment. Sensors 21(1), 141 (2020). https://doi.org/10.3390/s21010141

    Article  Google Scholar 

  18. Wang, S., Clark, R., Wen, H., Trigoni, N.: Deepvo: towards end-to-end visual odometry with deep recurrent convolutional neural networks. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 2043–2050 (2017). https://doi.org/10.1109/ICRA.2017.7989236

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Ochman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ochman, M., Skoczeń, M., Krata, D., Panek, M., Spyra, K., Pawłowski, A. (2021). RGB-D Odometry for Autonomous Lawn Mowing. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2021. Lecture Notes in Computer Science(), vol 12855. Springer, Cham. https://doi.org/10.1007/978-3-030-87897-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87897-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87896-2

  • Online ISBN: 978-3-030-87897-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics