Skip to main content

Convolutional Autoencoder Based Textile Defect Detection Under Unconstrained Setting

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12854))

Included in the following conference series:

  • 1000 Accesses

Abstract

Automated visual defect detection on textile products under unconstrained setting is a much sought-after, and at the same time a challenging problem. In general, textile products are structurally complex and highly varied in design, which makes the development of a generalized approach using conventional image processing methods impossible. Deep supervised machine learning models have been very successful on similar problems but cannot be applied in this use-case due to lack of annotated data. This paper demonstrates a novel automated approach which still leverages on the ability of deep learning models to capture complex features on the textured and colored fabric, but in an unsupervised manner. Specifically, deep autoencoders are applied to capture the complex features, which are further processed by image processing techniques like thresholding and blob detection, subsequently leading to detection of defects in the images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Association H.K.C.S, Council H.K.P: Textile handbook. Hong Kong Cotton Spinners Association, Hong Kong (2001)

    Google Scholar 

  2. Srinivasan, K., Dastoor, P.H., Radhakrishnaiah, P., Jayaraman, S.: FDAS: a knowledge-based framework for analysis of defects in woven textile structures. J. Text. Inst. 83, 431–448 (1992)

    Article  Google Scholar 

  3. Nalbach, O., Linn, C., Derouet, M., Werth, D.: Predictive quality: towards a new understanding of quality assurance using machine learning tools. In: Abramowicz, W., Paschke, A. (eds.) Business Information Systems. BIS 2018. Lecture Notes in Business Information Processing, vol. 320. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93931-5_3

  4. Nalbach, O., Derouet, M., Swamy, A.K.E., Werth, D.: Leveraging Unstructured Image Data for Product Quality Improvement. Wirtschaftsinformatik 2019 (2019)

    Google Scholar 

  5. Low, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004)

    Google Scholar 

  6. Zhao, X., Zhu, X., Xue, T., LIU, K., Deng, Y.: SIFT-based textile defects detection by using adaptive neural-fuzzy inference system (2018)

    Google Scholar 

  7. Suvdaa, B., Ahn, J.-H., Ko, J.-G.: Steel Surface Defects Detection and Classification Using SIFT and Voting Strategy (2012)

    Google Scholar 

  8. Kumar, A., Pang, G.K.H.: Defect detection in textured materials using Gabor filters. IEEE Trans. Ind. Appl. 38, 425–440 (2002)

    Article  Google Scholar 

  9. Jing, J., Fan, X., Li, P.: Automated fabric defect detection based on multiple Gabor filters and KPCA. Int. J. Multimed. Ubiquitous Eng. 11, 93–106 (2016)

    Article  Google Scholar 

  10. Mika, S., Schölkopf, B., Smola, A., Müller, K.R., Scholz, M., Rätsch, G.: Kernel PCA and de-noising in feature spaces. Adv. Neural Inf. Process. Syst. 11, 536–542 (1999)

    Google Scholar 

  11. Smith, P., Reid, D.B., Environment, C., Palo, L., Alto, P., Smith, P.L.: Otsu_1979_otsu_method. IEEE Trans. Syst. Man. Cybern. C 100, 62–66 (1979)

    Google Scholar 

  12. Hamdi, A.A., Sayed, M.S., Fouad, M.M., Hadhoud, M.M.: Unsupervised patterned fabric defect detection using texture filtering and K-means clustering. In: Proceedings of the 2018 International Conference on Innovative Trends in Computer Engineering ITCE 2018. 2018-March, pp. 130–144 (2018)

    Google Scholar 

  13. Jolliffe, I.T.: Principal Component Analysis and Factor Analysis. In: Principal Component Analysis, pp. 115–128. Springer New York, New York, NY (1986). https://doi.org/10.1007/978-1-4757-1904-8_8

  14. Shanbhag, P.M.: Fabric defect detection using principal component analysis. 2, 2863–2867 (2013)

    Google Scholar 

  15. Sarafijanovic-Djukic, N., Davis, J.: Fast distance-based anomaly detection in images using an inception-like autoencoder. In: Novak, P.K., Šmuc, T., Džeroski, S. (eds.) Discovery Science. DS 2019. Lecture Notes in Computer Science, vol. 11828. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33778-0_37

  16. Bergmann, P., Löwe, S., Fauser, M., Sattlegger, D., Steger, C.: Improving unsupervised defect segmentation by applying structural similarity to autoencoders. In: VISIGRAPP 2019 - Proceedings of the14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, vol. 5, pp. 372–380 (2019)

    Google Scholar 

  17. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004)

    Article  Google Scholar 

  18. Hu, G., Huang, J., Wang, Q., Li, J., Xu, Z., Huang, X.: Unsupervised fabric defect detection based on a deep convolutional generative adversarial network. Text. Res. J. 90, 247–270 (2020)

    Article  Google Scholar 

  19. Mahdizadehaghdam, S., Panahi, A., Krim, H.: Sparse generative adversarial network. In: Proceedings - 2019 International Conference on Computer Vision Workshop ICCVW 2019, pp. 3063–3071 (2019)

    Google Scholar 

  20. Werbos, P.: Backpropagation through time: what it does and how to do it. Proc. IEEE. 78, 1550–1560 (1990)

    Article  Google Scholar 

  21. Remove.bg: Background removal tool. https://www.remove.bg/

  22. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification. In: Proceedings of the IEEE International Conference on Computer Vision 2015 Inter, pp. 1026–1034 (2015)

    Google Scholar 

  23. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations ICLR 2015 - Conference Track Proceedings, pp. 1–15 (2015)

    Google Scholar 

  24. Yen, J.-C., Chang, F.-J., Chang, S.: A new criterion for automatic multilevel thresholding. IEEE Trans. Image Process. 4, 370–378 (1995)

    Article  Google Scholar 

  25. Bradski, G.: The OpenCV Library. Dr Dobb’s J. Softw. Tools Prof. Program. 25(11), 120–123 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Nagaraj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nagaraj, D., Vadiraja, P., Nalbach, O., Werth, D. (2021). Convolutional Autoencoder Based Textile Defect Detection Under Unconstrained Setting. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2021. Lecture Notes in Computer Science(), vol 12854. Springer, Cham. https://doi.org/10.1007/978-3-030-87986-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87986-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87985-3

  • Online ISBN: 978-3-030-87986-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics