Abstract
We propose an improvement of the Self-Organizing Map (SOM). In our version of SOM, the neighborhood widths of the Best Matching Units (BMUs) are computed on the basis of the data density and scattering in the input data space. The density and scattering are expressed by the values of the inner-cluster variances, which are obtained after the preliminary input data clustering. The experiments conducted on the two real datasets evaluated the proposed approach on the basis of a comparison with the three reference data visualization methods. By reporting the superiority of our technique over the other tested algorithms, we confirmed the effectiveness and accuracy of the introduced solution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ferreira, P.H.M., Araújo, A.F.R.: Growing self-organizing maps for nonlinear time-varying function approximation. Neural Process. Lett. 51(2), 1689–1714 (2020). https://doi.org/10.1007/s11063-019-10168-9
Frank, A., Asuncion, A.: UCI machine learning repository (2010). http://archive.ics.uci.edu/ml
Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer, Heidelberg (2001). https://doi.org/10.1007/978-3-642-56927-2
Martín-Merino, M., Muñoz, A.: Visualizing asymmetric proximities with SOM and MDS models. Neurocomputing 63, 171–192 (2005)
Mulier, F., Cherkassky, V.: Self-organization as an iterative kernel smoothing process. Neural Comput. 7(6), 1165–1177 (1995)
Olszewski, D.: Asymmetric k-means algorithm. In: Dobnikar, A., Lotrič, U., Šter, B. (eds.) ICANNGA 2011. LNCS, vol. 6594, pp. 1–10. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20267-4_1
Olszewski, D.: An experimental study on asymmetric self-organizing Map. In: Yin, H., Wang, W., Rayward-Smith, V. (eds.) IDEAL 2011. LNCS, vol. 6936, pp. 42–49. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23878-9_6
Olszewski, D.: k-means clustering of asymmetric data. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, S.-B. (eds.) HAIS 2012. LNCS (LNAI), vol. 7208, pp. 243–254. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28942-2_22
Olszewski, D.: An improved adaptive self-organizing map. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS (LNAI), vol. 8467, pp. 109–120. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07173-2_11
Olszewski, D., Kacprzyk, J., Zadrożny, S.: Time series visualization using asymmetric self-organizing map. In: Tomassini, M., Antonioni, A., Daolio, F., Buesser, P. (eds.) ICANNGA 2013. LNCS, vol. 7824, pp. 40–49. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37213-1_5
Olszewski, D., Kacprzyk, J., Zadrożny, S.: An improved adaptive self-organizing map. In: De Tré, G., Grzegorzewski, P., Kacprzyk, J., Owsiński, J.W., Penczek, W., Zadrożny, S. (eds.) Challenging Problems and Solutions in Intelligent Systems. SCI, vol. 634, pp. 75–102. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30165-5_5
Rauber, A., Merkl, D., Dittenbach, M.: The growing hierarchical self-organizing map: exploratory analysis of high-dimensional data. IEEE Trans. Neural Netw. 13(6), 1331–1341 (2002)
Villmann, T., Claussen, J.C.: Magnification control in self-organizing maps and neural gas. Neural Comput. 18(2), 446–469 (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Olszewski, D. (2021). Clustering-Based Adaptive Self-Organizing Map. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2021. Lecture Notes in Computer Science(), vol 12854. Springer, Cham. https://doi.org/10.1007/978-3-030-87986-0_16
Download citation
DOI: https://doi.org/10.1007/978-3-030-87986-0_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-87985-3
Online ISBN: 978-3-030-87986-0
eBook Packages: Computer ScienceComputer Science (R0)