Skip to main content

Population Management Approaches in the OPn Algorithm

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2021)

Abstract

This paper deals with the problem of selecting the population size for the population-based algorithm with dynamic selection of operators (OPn). This research was undertaken to check how population size changes affect the optimization of problems in which both the parameters of the solution and its structure should be selected. Moreover, variants in which the size of the population changes dynamically were considered. The simulations were performed for a small selection/variety of examples of control problems in which the structures and parameters of controllers based on PID systems had to be selected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antonio, L.M., Coello, C.A.C.: Coevolutionary multiobjective evolutionary algorithms: survey of the state-of-the-art. IEEE Trans. Evol. Comput 22(6), 851–865 (2017)

    Article  Google Scholar 

  2. Bartczuk, Ł, Dziwiński, P., Red’ko, V.G.: The concept on nonlinear modelling of dynamic objects based on state transition algorithm and genetic programming. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI), vol. 10246, pp. 209–220. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59060-8_20

    Chapter  Google Scholar 

  3. Bartczuk, Ł, Przybył, A., Cpałka, K.: A new approach to nonlinear modelling of dynamic systems based on fuzzy rules. Int. J. Appl. Math. Comput. Sci. (AMCS) 26(3), 603–621 (2016)

    Article  MathSciNet  Google Scholar 

  4. Bilski, J., Rutkowski, L., Smolag, J., Tao, D.: A novel method for speed training acceleration of recurrent neural networks. Inf. Sci. 553, 266–279 (2021)

    Article  MathSciNet  Google Scholar 

  5. Campelo, F., Aranha, C.: EC Bestiary: a bestiary of evolutionary, swarm and other metaphor-based algorithms. In: Zenodo (2018)

    Google Scholar 

  6. Chen, T., Tang, K., Chen, G., Yao, X.: A large population size can be unhelpful in evolutionary algorithms. Theor. Comput. Sci. 436, 54–70 (2012)

    Article  MathSciNet  Google Scholar 

  7. Cheon, K., Kim, J., Hamadache, M., Lee, D.: On replacing PID controller with deep learning controller for DC motor system. J. Autom. Control Eng 3(6), 452–456 (2015)

    Article  Google Scholar 

  8. Cui, L., et al.: A novel artificial bee colony algorithm with an adaptive population size for numerical function optimization. Inf. Sci. 414, 53–67 (2017)

    Article  MathSciNet  Google Scholar 

  9. Dziwiński, P., Bartczuk, Ł, Paszkowski, J.: A new auto adaptive fuzzy hybrid particle swarm optimization and genetic algorithm. J. Artif. Intell. Soft Comput. Res. 10(2), 95–111 (2020)

    Article  Google Scholar 

  10. Elbes, M., Alzubi, S., Kanan, T., Al-Fuqaha, A., Hawashin, B.: A survey on particle swarm optimization with emphasis on engineering and network applications. Evol. Intell 12(2), 113–129 (2019). https://doi.org/10.1007/s12065-019-00210-z

    Article  Google Scholar 

  11. Eltaeib, T., Mahmood, A.: Differential evolution: a survey and analysis. Appl. Sci. 8(10), 1945 (2018)

    Article  Google Scholar 

  12. Fukumoto, H., Oyama, A.: Study on improving efficiency of multi-objective evolutionary algorithm with large population by M2M decomposition and elitist mate selection scheme. In: 2018 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1180–1187. IEEE (2018)

    Google Scholar 

  13. Galkowski, T., Pawlak, M.: Nonparametric estimation of edge values of regression functions. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS (LNAI), vol. 9693, pp. 49–59. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39384-1_5

    Chapter  Google Scholar 

  14. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95-International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995)

    Google Scholar 

  15. Korytkowski, M., Senkerik, R., Scherer, M.M., Angryk, R.A., Kordos, M., Siwocha, A.: Efficient image retrieval by fuzzy rules from boosting and metaheuristic. J. Artif. Intell. Soft Comput. Res 10(1), 57–69 (2020)

    Article  Google Scholar 

  16. Krell, E., Sheta, A., Balasubramanian, A.P.R., King, S.A.: Collision-free autonomous robot navigation in unknown environments utilizing PSO for path planning. J. Artif. Intell. Soft Comput. Res. 9(4), 267–282 (2019)

    Article  Google Scholar 

  17. Laskowski, Ł, Laskowska, M., Jelonkiewicz, J., Boullanger, A.: Molecular approach to hopfield neural network. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS (LNAI), vol. 9119, pp. 72–78. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19324-3_7

    Chapter  Google Scholar 

  18. Liu, B., Yang, H., Lancaster, M.J.: Global optimization of microwave filters based on a surrogate model-assisted evolutionary algorithm. IEEE Trans. Microwave Theory Tech. 65(6), 1976–1985 (2017)

    Article  Google Scholar 

  19. Łapa, K., Szczypta, J., Venkatesan, R.: Aspects of structure and parameters selection of control systems using selected multi-population algorithms. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS (LNAI), vol. 9120, pp. 247–260. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19369-4_23

    Chapter  Google Scholar 

  20. Łapa, K., Cpałka, K.: Flexible fuzzy PID controller (FFPIDC) and a nature-inspired method for its construction. IEEE Trans. Ind. Inf. 14(3), 1078–1088 (2017)

    Article  Google Scholar 

  21. Łapa, K., Cpałka, K., Laskowski, Ł, Cader, A., Zeng, Z.: Evolutionary algorithm with a configurable search mechanism. J. Artif. Intell. Soft Comput. Res 10(3), 151–171 (2020)

    Article  Google Scholar 

  22. Ma, X., et al.: A survey on cooperative co-evolutionary algorithms. IEEE Trans. Evol. Comput. 23(3), 421–441 (2018)

    Article  Google Scholar 

  23. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw 69, 46–61 (2014)

    Article  Google Scholar 

  24. Mizera, M., Nowotarski, P., Byrski, A., Kisiel-Dorohinicki, M.: Fine tuning of agent-based evolutionary computing. J. Artif. Intell. Soft Comput. Res. 9, 81–97 (2019)

    Article  Google Scholar 

  25. Ono, K., Hanada, Y., Kumano, M., Kimura, M.: Enhancing island model genetic programming by controlling frequent trees. J. Artif. Intell. Soft Comput. Res. 9, 51–65 (2019)

    Article  Google Scholar 

  26. Piotrowski, A.P.: Review of differential evolution population size. Swarm Evol. Comput. 32, 1–24 (2017)

    Article  Google Scholar 

  27. Piotrowski, A.P., Napiorkowski, J.J., Piotrowska, A.E.: Population size in particle swarm optimization. Swarm Evol. Comput. 58, 100718 (2020)

    Article  Google Scholar 

  28. Polakova, R., Tvrdik, J., Bujok, P.: Differential evolution with adaptive mechanism of population size according to current population diversity. Swarm Evol. Comput. 50, 100519 (2019)

    Article  Google Scholar 

  29. Rutkowski, L.: Multiple Fourier series procedures for extraction of nonlinear regressions from noisy data. IEEE Trans. Signal Process. 41(10), 3062–3065 (1993)

    Article  Google Scholar 

  30. Rutkowski, L.: Sequential pattern recognition procedures derived from multiple Fourier series. Pattern Recogn. Lett. 8(4), 213–216 (1988)

    Article  Google Scholar 

  31. Sabri, L.A., Al-mshat, H.A.: Implementation of fuzzy and PID controller to water level system using labview. Int. J. Comput. Appl 116(11), 6–10 (2015)

    Google Scholar 

  32. Storn, R.: On the usage of differential evolution for function optimization. In Proceedings of North American Fuzzy Information Processing, pp. 519–523. IEEE (1996)

    Google Scholar 

  33. Szczypta, J., Przybył, A., Cpałka, K.: Some aspects of evolutionary designing optimal controllers. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013. LNCS (LNAI), vol. 7895, pp. 91–100. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38610-7_9

    Chapter  Google Scholar 

  34. Tambouratzis, G., Vassiliou, M.: Swarm algorithms for NLP: the case of limited training data. J. Artif. Intell. Soft Comput. Res 9, 219–234 (2019)

    Article  Google Scholar 

  35. Tan, Y., Zhu, Y.: Fireworks algorithm for optimization. In: Tan, Y., Shi, Y., Tan, K.C. (eds.) ICSI 2010. LNCS, vol. 6145, pp. 355–364. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13495-1_44

    Chapter  Google Scholar 

  36. Truong, V.H., Nguyen, P.C., Kim, S.E.: An efficient method for optimizing space steel frames with semi-rigid joints using practical advanced analysis and the micro-genetic algorithm. J. Constr. Steel Res. 128, 416–427 (2017)

    Article  Google Scholar 

  37. Wei, Y., et al.: Vehicle emission computation through microscopic traffic simulation calibrated using genetic algorithm. J. Artif. Intell. Soft Comput. Res. 9(1), 67–80 (2019)

    Article  Google Scholar 

  38. Whitley, D.: A genetic algorithm tutorial. Stat. Comput. 4(2), 65–85 (1994)

    Article  Google Scholar 

  39. Wu, G., Mallipeddi, R., Suganthan, P.N.: Ensemble strategies for population-based optimization algorithms-a survey. Swarm Evol. Comput 44, 695–711 (2019)

    Article  Google Scholar 

  40. Yang, X.S.: Free lunch or no free lunch: that is not just a question? Int. J. Artificial Intelligence Tools 21(3), 1240010 (2012). https://doi.org/10.1142/S0218213012400106

    Article  Google Scholar 

  41. Zalasiński, M., Cpałka, K., Hayashi, Y.: New fast algorithm for the dynamic signature verification using global features values. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS (LNAI), vol. 9120, pp. 175–188. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19369-4_17

    Chapter  Google Scholar 

  42. Zalasiński, M., Łapa, K., Cpałka, K., Przybyszewski, K., Yen, G.G.: On-line signature partitioning using a population based algorithm. J. Artif. Intell. Soft Comput. Res. 10(1), 5–13 (2020)

    Article  Google Scholar 

  43. Zhang, N., Chen, X., Kapre, N.: RapidLayout: fast hard block placement of FPGA-optimized systolic arrays using evolutionary algorithms. In: 2020 30th International Conference on Field-Programmable Logic and Applications (FPL), pp. 145–152. IEEE (2020)

    Google Scholar 

Download references

Acknowledgment

This paper was financed under the program of the Minister of Science and Higher Education under the name ’Regional Initiative of Excellence’ in the years 2019–2022 project number 020/RID/2018/19 with the amount of financing of PLN 12 000 000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krystian Łapa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Łapa, K., Cpałka, K., Słowik, A. (2021). Population Management Approaches in the OPn Algorithm. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2021. Lecture Notes in Computer Science(), vol 12854. Springer, Cham. https://doi.org/10.1007/978-3-030-87986-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87986-0_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87985-3

  • Online ISBN: 978-3-030-87986-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics