Skip to main content

Foreground Feature Selection and Alignment for Adaptive Object Detection

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 13019))

Included in the following conference series:

Abstract

Recently, remarkable progress has been witnessed in adaptive object detection, which aims to mitigate the distributional shifts between source domain and target domain. Domain-adversarial learning methods align the features of different levels to minimize the domain discrepancy, which have been proven effective for adapting object detectors. Most domain adaptation methods align whole-image features. Therefore, foreground alignment may be interfered by the backgrounds. In this work, we propose Foreground Feature Alignment Framework (FFAF) that strengthens the foreground alignment. One of our key contributions is the Foreground Selection Module (FSM), which captures the foreground features that are crucial for object detection and helpful for subsequent feature alignment. Additionally, we align the foreground features by integrating multi-level domain classifiers. Multi-level Domain adaptation (MDA) can simultaneously bridge the domain gap at various representation levels. We evaluate our method with multiple experiments, whose results demonstrate that our method achieves significant improvements in different cross-domain object detection tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cai, Z., Vasconcelos, N.: Cascade R-CNN: delving into high quality object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6154–6162 (2018)

    Google Scholar 

  2. Chen, C., Zheng, Z., Ding, X., Huang, Y., Dou, Q.: Harmonizing transferability and discriminability for adapting object detectors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8869–8878 (2020)

    Google Scholar 

  3. Chen, Y., Li, W., Sakaridis, C., Dai, D., Van Gool, L.: Domain adaptive faster R-CNN for object detection in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3339–3348 (2018)

    Google Scholar 

  4. Cordts, M., et al.: The Cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213–3223 (2016)

    Google Scholar 

  5. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The PASCAL visual object classes (VOC) challenge. Int. J. Comput. Vision 88(2), 303–338 (2010)

    Article  Google Scholar 

  6. Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand, M., Lempitsky, V.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2096–2030 (2016)

    MathSciNet  MATH  Google Scholar 

  7. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  8. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  9. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  11. He, Z., Zhang, L.: Multi-adversarial faster R-CNN for unrestricted object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 6668–6677 (2019)

    Google Scholar 

  12. He, Z., Zhang, L.: Domain adaptive object detection via asymmetric tri-Way Faster R-CNN. In: Proceedings of the European Conference on Computer Vision, pp. 309–324 (2020)

    Google Scholar 

  13. Inoue, N., Furuta, R., Yamasaki, T., Aizawa, K.: Cross-domain weakly-supervised object detection through progressive domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5001–5009 (2018)

    Google Scholar 

  14. Kim, T., Jeong, M., Kim, S., Choi, S., Kim, C.: Diversify and match: a domain adaptive representation learning paradigm for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 12456–12465 (2019)

    Google Scholar 

  15. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  16. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  17. Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: Proceedings of the European Conference on Computer Vision, pp. 740–755 (2014)

    Google Scholar 

  18. Liu, W., et al.: SSD: single shot multibox detector. In: Proceedings of the European Conference on Computer Vision, pp. 21–37 (2016)

    Google Scholar 

  19. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11), 2579–2605 (2008)

    MATH  Google Scholar 

  20. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  21. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2016)

    Article  Google Scholar 

  22. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  23. Saito, K., Ushiku, Y., Harada, T., Saenko, K.: Strong-weak distribution alignment for adaptive object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6956–6965 (2019)

    Google Scholar 

  24. Sakaridis, C., Dai, D., Van Gool, L.: Semantic foggy scene understanding with synthetic data. Int. J. Comput. Vision 126(9), 973–992 (2018)

    Article  Google Scholar 

  25. Shen, Z., Maheshwari, H., Yao, W., Savvides, M.: SCL: towards accurate domain adaptive object detection via gradient detach based stacked complementary losses. arXiv preprint arXiv:1911.02559 (2019)

  26. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations, pp. 1–14 (2015)

    Google Scholar 

  27. Xie, R., Yu, F., Wang, J., Wang, Y., Zhang, L.: Multi-level domain adaptive learning for cross-domain detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3213–3219 (2019)

    Google Scholar 

  28. Xu, C.D., Zhao, X.R., Jin, X., Wei, X.S.: Exploring categorical regularization for domain adaptive object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 11724–11733 (2020)

    Google Scholar 

  29. Yu, F., et al.: BDD100k: a diverse driving dataset for heterogeneous multitask learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2636–2645 (2020)

    Google Scholar 

  30. Zheng, Y., Huang, D., Liu, S., Wang, Y.: Cross-domain object detection through coarse-to-fine feature adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 13766–13775 (2020)

    Google Scholar 

  31. Zhu, J., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2242–2251 (2017)

    Google Scholar 

  32. Zhu, X., Pang, J., Yang, C., Shi, J., Lin, D.: Adapting object detectors via selective cross-domain alignment. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 687–696 (2019)

    Google Scholar 

  33. Zhuang, C., Han, X., Huang, W., Scott, M.: iFAN: image-instance full alignment networks for adaptive object detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 13122–13129 (2020)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under Grant 61976231, Grant U1611461, Grant 61573387, and Grant 61172141, in part by the Guangdong Basic and Applied Basic Research Foundation under Grant 2019A1515011869, and in part by the Science and Technology Program of Guangzhou under Grant 201803030029.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huicheng Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, Z., Zheng, H., Chen, M. (2021). Foreground Feature Selection and Alignment for Adaptive Object Detection. In: Ma, H., et al. Pattern Recognition and Computer Vision. PRCV 2021. Lecture Notes in Computer Science(), vol 13019. Springer, Cham. https://doi.org/10.1007/978-3-030-88004-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88004-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88003-3

  • Online ISBN: 978-3-030-88004-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics