Abstract
Although recent works based on deep learning have made progress in improving recognition accuracy on scene text recognition, how to handle low-quality text images in end-to-end deep networks remains a research challenge. In this paper, we propose an Iterative Fusion based Recognizer (IFR) for low quality scene text recognition, taking advantage of refined text images input and robust feature representation. IFR contains two branches which focus on scene text recognition and low quality scene text image recovery respectively. We utilize an iterative collaboration between two branches, which can effectively alleviate the impact of low quality input. A feature fusion module is proposed to strengthen the feature representation of the two branches, where the features from the Recognizer are Fused with image Restoration branch, referred to as RRF. Without changing the recognition network structure, extensive quantitative and qualitative experimental results show that the proposed method significantly outperforms the baseline methods in boosting the recognition accuracy of benchmark datasets and low resolution images in TextZoom dataset.
Z. Jia—Student
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cheng, Z., Bai, F., Xu, Y., Zheng, G., Pu, S., Zhou, S.: Focusing attention: towards accurate text recognition in natural images. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5076–5084 (2017)
Graves, A., Fernández, S., Gomez, F., Schmidhuber, J.: Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks. In: Proceedings of the 23rd international Conference on Machine Learning, pp. 369–376 (2006)
Gupta, A., Vedaldi, A., Zisserman, A.: Synthetic data for text localisation in natural images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2315–2324 (2016)
Jaderberg, M., Simonyan, K., Vedaldi, A., Zisserman, A.: Synthetic data and artificial neural networks for natural scene text recognition. In: NIPS Deep Learning Workshop (2014)
Jaderberg, M., Simonyan, K., Vedaldi, A., Zisserman, A.: Reading text in the wild with convolutional neural networks. Int. J. Comput. Vis. 116(1), 1–20 (2016)
Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K.: Spatial transformer networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)
Karatzas, D., et al.: ICDAR 2015 competition on robust reading. In: 13th International Conference on Document Analysis and Recognition), pp. 1156–1160 (2015)
Karatzas, D., et al.: ICDAR 2013 robust reading competition. In: 2013 12th International Conference on Document Analysis and Recognition, pp. 1484–1493 (2013)
Li, H., Wang, P., Shen, C., Zhang, G.: Show, attend and read: a simple and strong baseline for irregular text recognition. In: AAAI Conference on Artificial Intelligence (2019)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)
Long, S., He, X., Yao, C.: Scene text detection and recognition: the deep learning era. Int. J. Comput. Vis. 129(1), 161–184 (2021)
Lucas, S.M., et al.: ICDAR 2003 robust reading competitions: entries, results, and future directions. Int. J. Doc. Anal. Recogn. (IJDAR) 7(2–3), 105–122 (2005)
Luo, C., Jin, L., Sun, Z.: Moran: a multi-object rectified attention network for scene text recognition. Pattern Recogn. 90, 109–118 (2019)
Mishra, A., Alahari, K., Jawahar, C.: Scene text recognition using higher order language priors. In: British Machine Vision Conference (BMVC) (2012)
Mou, Y., et al.: PlugNet: degradation aware scene text recognition supervised by a pluggable super-resolution unit. In: The 16th European Conference on Computer Vision (ECCV 2020), pp. 1–17 (2020)
Neumann, L., Matas, J.: Real-time scene text localization and recognition. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3538–3545. IEEE (2012)
Quy Phan, T., Shivakumara, P., Tian, S., Lim Tan, C.: Recognizing text with perspective distortion in natural scenes. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 569–576 (2013)
Risnumawan, A., Shivakumara, P., Chan, C.S., Tan, C.L.: A robust arbitrary text detection system for natural scene images. Expert Syst. Appl. 41(18), 8027–8048 (2014)
Shi, B., Bai, X., Yao, C.: An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition. IEEE Trans. Pattern Anal. Mach. Intell. 39(11), 2298–2304 (2016)
Shi, B., Yang, M., Wang, X., Lyu, P., Yao, C., Bai, X.: Aster: an attentional scene text recognizer with flexible rectification. IEEE Trans. Pattern Anal. Mach. Intell. 41(9), 2035–2048 (2018)
Wan, Z., Xie, F., Liu, Y., Bai, X., Yao, C.: 2D-CTC for scene text recognition. arXiv preprint arXiv:1907.09705 (2019)
Wang, J., et al.: Towards robust visual information extraction in real world: new dataset and novel solution. In: Proceedings of the AAAI Conference on Artificial Intelligence (2021)
Wang, K., Babenko, B., Belongie, S.: End-to-end scene text recognition. In: 2011 International Conference on Computer Vision. pp. 1457–1464. IEEE (2011)
Wang, T., et al.: Decoupled attention network for text recognition. In: AAAI Conference on Artificial Intelligence (2020)
Wang, W., et al.: Scene text image super-resolution in the wild. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12355, pp. 650–666. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58607-2_38
Wu, C., Xu, S., Song, G., Zhang, S.: How many labeled license plates are needed? In: Lai, J.-H., et al. (eds.) PRCV 2018. LNCS, vol. 11259, pp. 334–346. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03341-5_28
Zamir, S.W., et al.: Multi-stage progressive image restoration. arXiv preprint arXiv:2102.02808 (2021)
Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 286–301 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Jia, Z., Xu, S., Mu, S., Tao, Y., Cao, S., Chen, Z. (2021). IFR: Iterative Fusion Based Recognizer for Low Quality Scene Text Recognition. In: Ma, H., et al. Pattern Recognition and Computer Vision. PRCV 2021. Lecture Notes in Computer Science(), vol 13020. Springer, Cham. https://doi.org/10.1007/978-3-030-88007-1_15
Download citation
DOI: https://doi.org/10.1007/978-3-030-88007-1_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-88006-4
Online ISBN: 978-3-030-88007-1
eBook Packages: Computer ScienceComputer Science (R0)