Skip to main content

AFM-RNN: A Sequent Prediction Model for Delineating Building Rooftops from Remote Sensing Images by Integrating RNN with Attraction Field Map

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 13020))

Included in the following conference series:

  • 2139 Accesses

Abstract

Accurately and automatically delineating the rooftops of buildings from remote sensing images is very essential to many fields. Recently, several Sequent Prediction Models have been proposed to deal with this task. These models use CNN encoder to recognize the boundary fragments by edge and vertex probability maps in order to guide RNN decoder find a set of sequent vertexes linking the boundaries into object regions. However, the recognition result of edge looks like large buffers around the real edges or vertexes of an object instance, which significantly influences the accuracy of predicted polygons. In this paper, we present a novel framework named AFM-RNN, in which a dual representation of lines called Attraction Field Map (AFM) is embedded by Neural Discriminative Dimensionality Reduction Layer (NDDR Layer). Consequently, the problem of over-smooth edge recognition can be effectively solved by directly modeling line segments. Experimental results over three datasets show that the proposed method outperforms other closely related methods. Code is available at https://github.com/Zeping-Liu/AFMRNN-pytorch.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acuna, D., et al.: Efficient interactive annotation of segmentation datasets with polygon-RNN++. In: CVPR, pp. 859–868 (2018)

    Google Scholar 

  2. Avbelj, J., Müller, R., Bamler, R.: A metric for polygon comparison and building extraction evaluation. IEEE Geosci. Remote Sens. Lett. 12(1), 170–174 (2015)

    Article  Google Scholar 

  3. Castrejon, L., Kundu, K., Urtasun, R., Fidler, S.C.: Annotating object instances with a polygon-RNN. In: CVPR, pp. 5230–5238 (2017)

    Google Scholar 

  4. Cheng, D., Liao, R., Fidler, S., Urtasun, R.: Darnet: deep active ray network for building segmentation. In: CVPR, pp. 7423–7431 (2019)

    Google Scholar 

  5. Duan, L., Lafarge, F.: Towards large-scale city reconstruction from satellites. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 89–104. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_6

    Chapter  Google Scholar 

  6. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)

    Article  Google Scholar 

  7. Gao, Y., Ma, J., Zhao, M., Liu, W., Yuille, A.L.: NDDR-CNN: layerwise feature fusing in multi-task CNNs by neural discriminative dimensionality reduction. In: CVPR, pp. 3200–3209 (2019)

    Google Scholar 

  8. Gur, S., Shaharabany, T., Wolf, L.: End to End Trainable Active Contours via Differentiable Rendering (2019). https://arxiv.org/abs/1912.00367

  9. He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask R-CNN. In: ICCV, pp. 2961–2969 (2017)

    Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

  11. Ji, S., Wei, S., Lu, M.: Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set. IEEE Trans. Geosci. Remote Sens. 57(1), 574–586 (2019)

    Article  Google Scholar 

  12. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)

    Article  Google Scholar 

  13. Ling, H., Gao, J., Kar, A., Chen, W., Fidler, S.: Fast interactive object annotation with curve-GCN. In: CVPR, pp. 5257–5266 (2019)

    Google Scholar 

  14. Li, Z., Wegner, J.D., Lucchi, A.: Topological map extraction from overhead images. In: ICCV, pp. 1715–1724 (2019)

    Google Scholar 

  15. Maninis, K., et al.: Convolutional oriented boundaries: from image segmentation to high-level tasks. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 819–833 (2018)

    Article  Google Scholar 

  16. Marcos, D., et al.: Learning deep structured active contours end-to-end. In: CVPR, pp. 8877–8885 (2018)

    Google Scholar 

  17. Peng, S., Jiang, W., Pi, H., Li, X., Bao, H., Zhou, X.: Deep snake for real-time instance segmentation. In: CVPR, pp. 8530–8539 (2020)

    Google Scholar 

  18. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017)

    Article  Google Scholar 

  19. Shi, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.C.S.: Convolutional LSTM network: a machine learning approach for recipitation nowcasting. In: NIPS, pp. 802–810 (2015)

    Google Scholar 

  20. Volodymyr, M.: Machine Learning for Aerial Image Labeling. Ph.D.disseartion, University of Toronto, Canada (2013)

    Google Scholar 

  21. Vandenhende, S., et al.: Multi-task learning for dense prediction tasks: a survey. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). https://doi.org/10.1109/TPAMI.2021.3054719

  22. Xie, S., Tu, Z.: Holistically-nested edge detection. In: CVPR, pp. 1395–1403 (2015)

    Google Scholar 

  23. Xue, N., Bai, S., Wang, F., Xia, G., Wu, T., Zhang, L.: Learning attraction field representation for robust line segment detection. In: CVPR, pp. 1595–1603 (2019)

    Google Scholar 

  24. Zhang, Z., Cui, Z., Xu, C., Jie, Z., Li, X., Yang, J.: Joint task-recursive learning for semantic segmentation and depth estimation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 238–255. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_15

    Chapter  Google Scholar 

Download references

Acknowledgment

This work was supported in part by the National Natural Science Founsdation of China under Grant No. 41971280 and in part by the National Key R&D Program of China under Grant 618 No. 2017YFB0504104.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Z., Tang, H., Huang, W. (2021). AFM-RNN: A Sequent Prediction Model for Delineating Building Rooftops from Remote Sensing Images by Integrating RNN with Attraction Field Map. In: Ma, H., et al. Pattern Recognition and Computer Vision. PRCV 2021. Lecture Notes in Computer Science(), vol 13020. Springer, Cham. https://doi.org/10.1007/978-3-030-88007-1_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88007-1_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88006-4

  • Online ISBN: 978-3-030-88007-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics