Skip to main content

Scale-Aware Distillation Network for Lightweight Image Super-Resolution

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 13021))

Included in the following conference series:

Abstract

Many lightweight models have achieved great progress in single image super-resolution. However, their parameters are still too many to be applied in practical applications, and it still has space for parameter reduction. Meanwhile, multi-scale features are usually underutilized by researchers, which are better for multi-scale regions’ reconstruction. With the renaissance of deep learning, convolution neural network based methods has prompted many computer vision tasks (e.g., video object segmentation [21, 38, 40], human parsing [39], human-object interaction detection [39]) to achieve significant progresses. To solve this limitation, in this paper, we propose a lightweight super-resolution network named scale-aware distillation network (SDNet). SDNet is built on many stacked scale-aware distillation blocks (SDB), which contain a scale-aware distillation unit (SDU) and a context enhancement (CE) layer. Specifically, SDU enriches the hierarchical features at a granular level via grouped convolution. Meanwhile, the CE layer further enhances the multi-scale feature representation from SDU by context learning to extract more discriminative information. Extensive experiments are performed on commonly-used super-resolution datasets, and our method achieves promising results against other state-of-the-art methods with fewer parameters.

This is a student paper.

This work is supported by the National Natural Science Foundation of China (No. 61273273), by the National Key Research and Development Plan (No. 2017YFC0112001), and by China Central Television (JG2018-0247).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahn, N., Kang, B., Sohn, K.-A.: Fast, accurate, and lightweight super-resolution with cascading residual network. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 256–272. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_16

    Chapter  Google Scholar 

  2. Bevilacqua, M., Roumy, A., Guillemot, C., Alberi-Morel, M.L.: Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In: BMVC, pp. 1–10 (2012)

    Google Scholar 

  3. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_13

    Chapter  Google Scholar 

  4. Feng, R., Guan, W., Qiao, Y., Dong, C.: Exploring multi-scale feature propagation and communication for image super resolution. arXiv preprint arXiv:2008.00239 (2020)

  5. Gao, Q., Zhao, Y., Li, G., Tong, T.: Image super-resolution using knowledge distillation. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11362, pp. 527–541. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20890-5_34

    Chapter  Google Scholar 

  6. Han, K., Wang, Y., Tian, Q., Guo, J., Xu, C., Xu, C.: GhostNet: more features from cheap operations. In: CVPR, pp. 1580–1589 (2020)

    Google Scholar 

  7. Haris, M., Shakhnarovich, G., Ukita, N.: Deep back-projection networks for super-resolution. In: CVPR, pp. 1664–1673 (2018)

    Google Scholar 

  8. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR, pp. 7132–7141 (2018)

    Google Scholar 

  9. Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: CVPR, pp. 5197–5206 (2015)

    Google Scholar 

  10. Hui, Z., Gao, X., Yang, Y., Wang, X.: Lightweight image super-resolution with information multi-distillation network. In: ACM MM, pp. 2024–2032 (2019)

    Google Scholar 

  11. Hui, Z., Wang, X., Gao, X.: Fast and accurate single image super-resolution via information distillation network. In: CVPR, pp. 723–731 (2018)

    Google Scholar 

  12. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196 (2017)

  13. Kim, J., Kwon Lee, J., Mu Lee, K.: Accurate image super-resolution using very deep convolutional networks. In: CVPR, pp. 1646–1654 (2016)

    Google Scholar 

  14. Kim, J., Kwon Lee, J., Mu Lee, K.: Deeply-recursive convolutional network for image super-resolution. In: CVPR, pp. 1637–1645 (2016)

    Google Scholar 

  15. Lai, W.S., Huang, J.B., Ahuja, N., Yang, M.H.: Deep Laplacian pyramid networks for fast and accurate super-resolution. In: CVPR, pp. 624–632 (2017)

    Google Scholar 

  16. Lee, R., et al.: Journey towards tiny perceptual super-resolution. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12371, pp. 85–102. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58574-7_6

    Chapter  Google Scholar 

  17. Lee, W., Lee, J., Kim, D., Ham, B.: Learning with privileged information for efficient image super-resolution. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12369, pp. 465–482. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58586-0_28

    Chapter  Google Scholar 

  18. Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks for single image super-resolution. In: CVPR, pp. 136–144 (2017)

    Google Scholar 

  19. Liu, J., Tang, J., Wu, G.: Residual feature distillation network for lightweight image super-resolution. arXiv:2009.11551 (2020)

  20. Liu, J., Zhang, W., Tang, Y., Tang, J., Wu, G.: Residual feature aggregation network for image super-resolution. In: CVPR, pp. 2359–2368 (2020)

    Google Scholar 

  21. Lu, X., Wang, W., Danelljan, M., Zhou, T., Shen, J., Van Gool, L.: Video object segmentation with episodic graph memory networks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 661–679. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_39

    Chapter  Google Scholar 

  22. Luo, X., Xie, Y., Zhang, Y., Qu, Y., Li, C., Fu, Y.: LatticeNet: towards lightweight image super-resolution with lattice block. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12367, pp. 272–289. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58542-6_17

    Chapter  Google Scholar 

  23. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: ICCV, vol. 2, pp. 416–423 (2001)

    Google Scholar 

  24. Matsui, Y., et al.: Sketch-based manga retrieval using Manga109 dataset. Multimedia Tools Appl. 76(20), 21811–21838 (2017)

    Article  Google Scholar 

  25. Muqeet, A., Hwang, J., Yang, S., Kang, J., Kim, Y., Bae, S.H.: Multi-attention based ultra lightweight image super-resolution. arXiv:2008.12912 (2020)

  26. Shi, W., et al.: Cardiac image super-resolution with global correspondence using Multi-Atlas PatchMatch. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8151, pp. 9–16. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40760-4_2

    Chapter  Google Scholar 

  27. Szegedy, C., et al.: Going deeper with convolutions. In: CVPR, pp. 1–9 (2015)

    Google Scholar 

  28. Tai, Y., Yang, J., Liu, X.: Image super-resolution via deep recursive residual network. In: CVPR, pp. 3147–3155 (2017)

    Google Scholar 

  29. Tai, Y., Yang, J., Liu, X., Xu, C.: MemNet: a persistent memory network for image restoration. In: ICCV, pp. 4539–4547 (2017)

    Google Scholar 

  30. Tong, T., Li, G., Liu, X., Gao, Q.: Image super-resolution using dense skip connections. In: ICCV, pp. 4799–4807 (2017)

    Google Scholar 

  31. Xu, Y.S., Tseng, S.Y.R., Tseng, Y., Kuo, H.K., Tsai, Y.M.: Unified dynamic convolutional network for super-resolution with variational degradations. In: CVPR, pp. 12496–12505 (2020)

    Google Scholar 

  32. Yang, J., Wright, J., Huang, T.S., Ma, Y.: Image super-resolution via sparse representation. IEEE TIP 19(11), 2861–2873 (2010)

    MathSciNet  MATH  Google Scholar 

  33. Yuan, P., et al..: HS-ResNet: hierarchical-split block on convolutional neural network. arXiv:2010.07621 (2020)

  34. Zhang, Q., et al.: Split to be slim: an overlooked redundancy in vanilla convolution. arXiv preprint arXiv:2006.12085 (2020)

  35. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 294–310. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_18

    Chapter  Google Scholar 

  36. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-resolution. In: CVPR, pp. 2472–2481 (2018)

    Google Scholar 

  37. Zhao, H., Kong, X., He, J., Qiao, Y., Dong, C.: Efficient image super-resolution using pixel attention. arXiv:2010.01073 (2020)

  38. Zhou, T., Li, J., Wang, S., Tao, R., Shen, J.: MATNet: motion-attentive transition network for zero-shot video object segmentation. IEEE TIP 29, 8326–8338 (2020)

    Google Scholar 

  39. Zhou, T., Qi, S., Wang, W., Shen, J., Zhu, S.C.: Cascaded parsing of human-object interaction recognition. IEEE TPAMI (2021)

    Google Scholar 

  40. Zhou, T., Wang, S., Zhou, Y., Yao, Y., Li, J., Shao, L.: Motion-attentive transition for zero-shot video object segmentation. In: AAAI, pp. 13066–13073 (2020)

    Google Scholar 

  41. Zou, W.W., Yuen, P.C.: Very low resolution face recognition problem. IEEE TIP 21(1), 327–340 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lu, H., Lu, Y., Li, G., Sun, Y., Wang, S., Li, Y. (2021). Scale-Aware Distillation Network for Lightweight Image Super-Resolution. In: Ma, H., et al. Pattern Recognition and Computer Vision. PRCV 2021. Lecture Notes in Computer Science(), vol 13021. Springer, Cham. https://doi.org/10.1007/978-3-030-88010-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88010-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88009-5

  • Online ISBN: 978-3-030-88010-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics