Skip to main content

Smooth Coupled Tucker Decomposition for Hyperspectral Image Super-Resolution

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 13021))

Included in the following conference series:

  • 2212 Accesses

Abstract

Hyperspectral image processing methods based on Tucker decomposition by utilizing low-rank and sparse priors are sensitive to the model order, and merely utilizing the global structural information. After statistical analysis on hyperspectral images, we find that the smoothness underlying hyperspectral image encoding local structural information is ubiquity in each mode. Based on this observation, we propose a novel smooth coupled Tucker decomposition scheme with two smoothness constraints imposed on the subspace factor matrices to reveal the local structural information of hyperspectral image. In addition, efficient algorithms are designed and experimental results demonstrate the effectiveness of selecting optimal model order for hyperspectral image super-resolution due to the integration of the subspace smoothness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this study, the rank of CPD/Tucker decomposition and the size of dictionaries in [4] are collectively referred as model order. In our models, the size of core tensor is model order.

1. References

  1. Bu, Y., et al.: Hyperspectral and multispectral image fusion via graph laplacian-guided coupled tensor decomposition. IEEE Trans. Geosci. Remote Sens. 59(1), 648–662 (2020)

    Article  MathSciNet  Google Scholar 

  2. Xue, J., Zhao, Y.Q., Bu, Y., Liao, W., Chan, J.C.W., Philips, W.: Spatial-spectral structured sparse low-rank representation for hyperspectral image super-resolution. IEEE Trans. Image Process. 30, 3084–3097 (2021)

    Article  MathSciNet  Google Scholar 

  3. Li, H., Li, W., Han, G., Liu, F.: Coupled tensor decomposition for hyperspectral pansharpening. IEEE Access 6, 34 206–34 213 (2018)

    Google Scholar 

  4. Li, S., Dian, R., Fang, L., Bioucas-Dias, J.M.: Fusing hyperspectral and multispectral images via coupled sparse tensor factorization. IEEE Trans. Image Process. 27(8), 4118–4130 (2018)

    Article  MathSciNet  Google Scholar 

  5. Kanatsoulis, C.I., Fu, X., Sidiropoulos, N.D., Ma, W.-K.: Hyperspectral super-resolution: a coupled tensor factorization approach. IEEE Trans. Signal Process. 66(24), 6503–6517 (2018)

    Article  MathSciNet  Google Scholar 

  6. Prevost, C., Usevich, K., Comon, P., Brie, D.: Hyperspectral super-resolution with coupled tucker approximation: Identifiability and SVD-based algorithms, November 2018, working paper or preprint. https://hal.archives-ouvertes.fr/hal-01911969

  7. Prvost, C., Usevich, K., Comon, P., Brie, D.: Coupled tensor low-rank multilinear approximation for hyperspectral super-resolution. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5536–5540 (2019)

    Google Scholar 

  8. Wang, B., Yang, L., Zhao, Y.: Polo: learning explicit cross-modality fusion for temporal action localization. IEEE Signal Process. Lett. 28, 503–507 (2021)

    Article  Google Scholar 

  9. Wald, L., Ranchin, T., Mangolini, M.: Fusion of satellite images of different spatial resolutions: assessing the quality of resulting images. Photogramm. Eng. Rem. S. 63(6), 691–699 (1997)

    Google Scholar 

  10. Yokoya, N., Grohnfeldt, C., Chanussot, J.: Hyperspectral and multispectral data fusion: a comparative review of the recent literature. IEEE Geosci. Remote Sens. Mag. 5(2), 29–56 (2017)

    Article  Google Scholar 

  11. Xue, J., Zhao, Y., Liao, W., Chan, J.C., Kong, S.G.: Enhanced sparsity prior model for low-rank tensor completion. IEEE Trans. Neural Netw. Learn. Syst. 1–15 (2019)

    Google Scholar 

  12. Salakhutdinov, R., Mnih, A.: Probabilistic matrix factorization. In: Proceedings Advanced International Conference Neural Information Processing System, pp. 1257–1264 (2007)

    Google Scholar 

  13. Yokota, T., Zhao, Q., Cichocki, A.: Smooth PARAFAC decomposition for tensor completion. IEEE Trans. Signal Process. 64(20), 5423–5436 (2016)

    Article  MathSciNet  Google Scholar 

  14. Imaizumi, M., Hayashi, K.: Tensor decomposition with smoothness, ser. Proceedings of Machine Learning Research. Precup, D., Teh, Y.W. (eds.) vol. 70. International Convention Centre, Sydney, Australia: PMLR, 06–11 Aug 2017, pp. 1597–1606 (2017). http://proceedings.mlr.press/v70/imaizumi17a.html

  15. Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the kurdyka-łojasiewicz inequality. Math. Oper. Res. 35(2), 438–457 (2010)

    Article  MathSciNet  Google Scholar 

  16. Huang, K., Sidiropoulos, N.D., Liavas, A.P.: A flexible and efficient algorithmic framework for constrained matrix and tensor factorization. IEEE Trans. Signal Process. 64(19), 5052–5065 (2016)

    Article  MathSciNet  Google Scholar 

  17. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundat. Trends Mach. Learn. 3(1), 1–122 (2011)

    MATH  Google Scholar 

  18. Dell’Acqua, F., Gamba, P., Ferrari, A., Palmason, J.A., Benediktsson, J.A., Arnason, K.: Exploiting spectral and spatial information in hyperspectral urban data with high resolution. IEEE Geosci. Remote Sens. Lett. 1(4), 322–326 (2004)

    Article  Google Scholar 

  19. Wei, Q., Dobigeon, N., Tourneret, J.-Y.: Fast fusion of multi-band images based on solving a sylvester equation. IEEE Trans. Image Process. 24(11), 4109–4121 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 61371152 and Grant 61771391, in part by the Shenzhen Municipal Science and Technology Innovation Committee under Grant JCYJ20170815162956949 and JCYJ20180306171146740 and in part by Key R&D Plan of Shaanxi Province 2020ZDLGY07–11, by Natural Science Basic Research plan in Shaanxi Province of China 2018JM6056 and by the innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University CX2021081.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongqiang Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bu, Y., Zhao, Y., Xue, J., Chan, J.CW. (2021). Smooth Coupled Tucker Decomposition for Hyperspectral Image Super-Resolution. In: Ma, H., et al. Pattern Recognition and Computer Vision. PRCV 2021. Lecture Notes in Computer Science(), vol 13021. Springer, Cham. https://doi.org/10.1007/978-3-030-88010-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88010-1_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88009-5

  • Online ISBN: 978-3-030-88010-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics