Skip to main content

A Guided Attention 4D Convolutional Neural Network for Modeling Spatio-Temporal Patterns of Functional Brain Networks

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2021)

Abstract

Since the complex brain functions are achieved by the interaction of functional brain networks with the specific spatial distributions and temporal dynamics, modeling the spatial and temporal patterns of functional brain networks based on 4D fMRI data offers a way to understand the brain functional mechanisms. Matrix decomposition methods and deep learning methods have been developed to provide solutions. However, the underlying nature of functional brain networks remains unclear due to underutilizing the spatio-temporal characteristics of 4D fMRI input in previous methods. To address this problem, we propose a novel Guided Attention 4D Convolutional Neural Network (GA-4DCNN) to model spatial and temporal patterns of functional brain networks simultaneously. GA-4DCNN consists of two subnetworks: the spatial 4DCNN and the temporal Guided Attention (GA) network. The 4DCNN firstly extracts spatio-temporal characteristics of fMRI input to model the spatial pattern, while the GA network further models the corresponding temporal pattern guided by the modeled spatial pattern. Based on two task fMRI datasets from the Human Connectome Project, experimental results show that the proposed GA-4DCNN has superior ability and generalizability in modeling spatial and temporal patterns compared to other state-of-the-art methods. This study provides a new useful tool for modeling and understanding brain function.

This is a student paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Naselaris, T., Kay, K.N., Nishimoto, S., Gallant, J.L.: Encoding and decoding in fMRI. Neuroimage 56(2), 400–410 (2011)

    Article  Google Scholar 

  2. Logothetis, N.K.: What we can do and what we cannot do with fMRI. Nature 453(7197), 869–878 (2008)

    Article  Google Scholar 

  3. Andersen, A.H., Gash, D.M., Avison, M.J.: Principal component analysis of the dynamic response measured by fMRI: a generalized linear systems framework. Magn. Reson. Imaging 17(6), 795–815 (1999)

    Article  Google Scholar 

  4. McKeown, M.J., Hansen, L.K., Sejnowski, T.J.: Independent component analysis of functional MRI: what is signal and what is noise? Curr. Opin. Neurobiol. 13(5), 620–629 (2003)

    Article  Google Scholar 

  5. Lv, J.L., et al.: Sparse representation of whole-brain fMRI signals for identification of functional networks. Med. Image Anal. 20(1), 112–134 (2015)

    Article  Google Scholar 

  6. Jiang, X., et al.: Sparse representation of HCP grayordinate data reveals novel functional architecture of cerebral cortex. Hum. Brain Mapp. 36(12), 5301–5319 (2015)

    Article  Google Scholar 

  7. Zhang, W., et al.: Experimental comparisons of sparse dictionary learning and independent component analysis for brain network inference from fMRI data. IEEE Trans. Biomed. Eng. 66(1), 289–299 (2019)

    Article  Google Scholar 

  8. Hjelm, R.D., Plis, S.M., Calhoun, V.: Recurrent neural networks for spatiotemporal dynamics of intrinsic networks from fMRI data. NIPS Brains Bits (2016)

    Google Scholar 

  9. Huang, H., et al.: Modeling task fMRI data via deep convolutional autoencoder. IEEE Trans. Med. Imaging 37(7), 1551–1561 (2018)

    Article  Google Scholar 

  10. Zhang, W., et al.: Identify hierarchical structures from task-based fMRI data via hybrid spatiotemporal neural architecture search net. Med. Image Comput. Comput. Assist. Interv. 2019, 745–753 (2019)

    Google Scholar 

  11. Zhang, W., et al.: Hierarchical organization of functional brain networks revealed by hybrid spatiotemporal deep learning. Brain Connect. 10(2), 72–82 (2020)

    Article  Google Scholar 

  12. Zhao, Y., et al.: Four-dimensional modeling of fMRI data via spatio-temporal convolutional neural networks (ST-CNNs). IEEE Trans. Cognit. Dev. Syst. 12(3), 451–460 (2020)

    Article  Google Scholar 

  13. Zhao, Y., et al.: Modeling 4D fMRI data via spatio-temporal convolutional neural networks (ST-CNNs). In: Medical Image Computing and Computer Assisted Intervention (2018)

    Google Scholar 

  14. Jiang, X., Zhang, T., Zhang, S., Kendrick, K.M., Liu, T.M.: Fundamental functional differences between gyri and sulci: implications for brain function, cognition, and behavior. Psychoradiology 1(1), 23–41 (2021)

    Article  Google Scholar 

  15. Wang, Z.Y., Zou, N., Shen, D.G., Ji, S.W.: Non-local U-nets for biomedical image segmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 4, pp. 6315–6322 (2020)

    Google Scholar 

  16. Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E.J., Yacoub, E., Ugurbil, K.: The WU-Minn human connectome project: an overview. NeuroImage 80, 62–79 (2013)

    Google Scholar 

  17. Woolrich, M.W., Ripley, B.D., Brady, M., Smith, S.M.: Temporal autocorrelation in univariate linear modeling of fMRI data. Neuroimage 14(6), 1370–1386 (2001)

    Article  Google Scholar 

  18. Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, W.M., Smith, SM.: FSL. Neuroimage 62(2), 782–790 (2012)

    Google Scholar 

  19. Dale, A.M., Fischl, B., Sereno, M.I.: Cortical surface-based analysis. Neuroimage 9(2), 179–194 (1999)

    Article  Google Scholar 

  20. Smith, S.M., et al.: Correspondence of the brain’s functional architecture during activation and rest. Proc. Natl. Acad. Sci. 106(31), 13040–13045 (2009)

    Article  Google Scholar 

  21. Raichle, M.E., MacLeod, A.M., Snyder, A.Z., Powers, W.J., Gusnard, D.A., Shulman, D.L.: A default mode of brain function. Proc. Natl. Acad. Sci. U.S.A. 98(2), 676–682 (2001)

    Article  Google Scholar 

  22. Greicius, M.D., Krasnow, B., Reiss, A.L., Menon, V.: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. U.S.A. 100(1), 253–258 (2003)

    Article  Google Scholar 

  23. Vaswani, A., et al.: Attention is all you need. In: 31st Annual Conference on Neural Information Processing Systems, pp. 6000–6010 (2017)

    Google Scholar 

  24. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations 2015 (2015)

    Google Scholar 

Download references

Acknowledgements

This work was partly supported by the National Natural Science Foundation of China (61976045), Sichuan Science and Technology Program (2021YJ0247), Sichuan Science and Technology Program for Returned Overseas People (2021LXHGKJHD24), Key Scientific and Technological Projects of Guangdong Province Government (2018B030335001), National Natural Science Foundation of China (62006194), the Fundamental Research Funds for the Central Universities (3102019QD005), High-level researcher start-up projects (06100-20GH020161), and National Natural Science Foundation of China (31971288 and U1801265).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yan, J. et al. (2021). A Guided Attention 4D Convolutional Neural Network for Modeling Spatio-Temporal Patterns of Functional Brain Networks. In: Ma, H., et al. Pattern Recognition and Computer Vision. PRCV 2021. Lecture Notes in Computer Science(), vol 13021. Springer, Cham. https://doi.org/10.1007/978-3-030-88010-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88010-1_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88009-5

  • Online ISBN: 978-3-030-88010-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics