Skip to main content

Deep-Based Super-Angular Resolution for Diffusion Imaging

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 13021))

Included in the following conference series:

Abstract

High angular resolution diffusion imaging (HARDI) allows for more detailed fiber structures to be obtained by scanning in more directions than conventional diffusion MRI. However, the scanning time of HARDI increases linearly with the number of directions, which limits its use in clinical practice. And directly reducing the directions of HARDI to shorten the scan time would lead to a non-accurate reconstruction of microstructural tissues, such as complex white matter fibers. In this work, we propose a deep-based super-angular resolution scheme to reduce scanning orientations while maintaining reconstruction accuracy, in which an end-to-end neural network is proposed to map low-angular resolution diffusion imaging (LARDI) data to HARDI data. Specifically, our deep network is designed for a tailored farthest point sampling in q-space, which can maximize the separation angles between nearest gradients. For implementation, we transform the sampled 4-D diffusion data into six 3-D data and feed them respectively into six 3-D sub-networks to extract features in the spatial and angular domains. Experimental results show that our scheme can yield an accurate prediction of HARDI from LARDI on the human connectome program (HCP) dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.humanconnectome.org/study/hcp-young-adult.

References

  1. Shrot, S., Salhov, M., Dvorski, N., Konen, E., Averbuch, A., Hoffmann, C.: Application of MR morphologic, diffusion tensor, and perfusion imaging in the classification of brain tumors using machine learning scheme. Neuroradiology 61(7), 757–765 (2019). https://doi.org/10.1007/s00234-019-02195-z

    Article  Google Scholar 

  2. Koay, C.G., Özarslan, E.: Conceptual foundations of diffusion in magnetic resonance. Concepts Magn. Reson. Part A Bridg. Educ. Res. 42(4), 116–129 (2013)

    Article  Google Scholar 

  3. Tuch, D.S., Reese, T.G., Wiegell, M.R., Makris, N., Belliveau, J.W., Wedeen, V.J.: High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn. Reson. Med. 48(4), 577–582 (2002)

    Article  Google Scholar 

  4. Tournier, J.D., Calamante, F., Connelly, A.: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. Neuroimage 35(4), 1459–1472 (2007)

    Article  Google Scholar 

  5. Cheng, J., Deriche, R., Jiang, T., Shen, D., Yap, P.T.: Non-negative spherical deconvolution (NNSD) for estimation of fiber orientation distribution function in single-/multi-shell diffusion MRI. Neuroimage 101, 750–764 (2014)

    Article  Google Scholar 

  6. Michailovich, O., Rathi, Y.: Fast and accurate reconstruction of HARDI data using compressed sensing. Med Image Comput. Comput. Assist. Interv. 13(1), 607–614 (2010)

    Google Scholar 

  7. Michailovich, O., Rathi, Y.: On approximation of orientation distributions by means of spherical ridgelets. IEEE Trans. Image Process 19(2), 461–477 (2009)

    Article  MathSciNet  Google Scholar 

  8. Schwab, E., Vidal, R., Charon, N.: Spatial-angular sparse coding for HARDI. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 475–483. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46726-9_55

    Chapter  Google Scholar 

  9. Lin, Z., et al.: Fast learning of fiber orientation distribution function for MR tractography using convolutional neural network. Med Phys 46(7), 3101–3116 (2019)

    Article  Google Scholar 

  10. Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: CVPR, pp. 1874–1883 (2016)

    Google Scholar 

  11. Qin, Y., Liu, Z., Liu, C., Li, Y., Zeng, X., Ye, C.: Super-Resolved q-Space deep learning with uncertainty quantification. Med. Image Anal. 67, 101885 (2020)

    Google Scholar 

  12. Cheng, J., Shen, D., Yap, P.T., Basser, P.J.: Single- and multiple-shell uniform sampling schemes for diffusion MRI using spherical codes. IEEE Trans. Med. Imaging 37(1), 185–199 (2018)

    Article  Google Scholar 

  13. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. arXiv preprint arXiv:1706.02413 (2017)

  14. Koay, C.G., Chang, L.C., Carew, J.D., Pierpaoli, C., Basser, P.J.: A unifying theoretical and algorithmic framework for least squares methods of estimation in diffusion tensor imaging. J. Magn. Reson. 182(1), 115–125 (2006)

    Article  Google Scholar 

  15. Wasserthal, J., Neher, P., Maier-Hein, K.H.: TractSeg-Fast and accurate white matter tract segmentation. Neuroimage 183, 239–253 (2018)

    Article  Google Scholar 

  16. Jung, W., et al.: Exploring linearity of deep neural network trained QSM: QSMnet+. NeuroImage 211, 116619 (2020)

    Google Scholar 

  17. Mani, M., Jacob, M., Guidon, A., Magnotta, V., Zhong, J.: Acceleration of high angular and spatial resolution diffusion imaging using compressed sensing with multichannel spiral data. Magn. Reson. Med. 73(1), 126–138 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This research was sponsored in part by the National Natural Science Foundation of China (Grant Nos. 62002327, 61976190), and Natural Science Foundation of Zhejiang Province (Grant No. LQ21F020017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanjing Feng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Z., Peng, C., Zhang, H., Zeng, Q., Feng, Y. (2021). Deep-Based Super-Angular Resolution for Diffusion Imaging. In: Ma, H., et al. Pattern Recognition and Computer Vision. PRCV 2021. Lecture Notes in Computer Science(), vol 13021. Springer, Cham. https://doi.org/10.1007/978-3-030-88010-1_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88010-1_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88009-5

  • Online ISBN: 978-3-030-88010-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics