Skip to main content

DPACN: Dual Prior-Guided Astrous Convolutional Network for Adhesive Pulmonary Nodules Segmentation on CT Sequence

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 13021))

Included in the following conference series:

  • 2135 Accesses

Abstract

The segmentation of malignant nodules is crucial to pre-operative planning, while it adhere to lung tissue extremely, which leads to false positive too high. Considering inaccurate segmentation of adhesive pulmonary nodules, Dual prior-guided Astrous Convolutional Network (DPACN) is proposed to achieve coarse-to-fine nodules segmentation. In view of spatial continuity and visual similarity of pulmonary nodules in CT sequences, visual prior module is proposed to focus on the visual feature and location prior module is proposed to focus on the spatial feature. The result of dual prior concatenated into Astrous Convolutional Network to fine-tune previous result and obtain the more accurate nodules segmentation result of other slices. In order to verify the validity of our method, we conduct experiment on 1,200 adhesive pulmonary nodules. Our method yielded Dice coefficient of 87.57%, Volumetric Overlap Error of 4.86% and demonstrated that proposed method can distinguish pulmonary nodules and lung other tissue and segment adhesive nodules effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, K., Li, B., Tian, L.-F., Zhu, W.-B., Bao, Y.-H.: Vessel attachment nodule segmentation using integrated active contour model based on fuzzy speed function and shape-intensity joint Bhattacharya distance. Sig. Process. 103, 273–284 (2014)

    Article  Google Scholar 

  2. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2016)

    Article  Google Scholar 

  3. De Vries, H., Strub, F., Mary, J., Larochelle, H., Pietquin, O., Courville, A.C.: Modulating early visual processing by language. In: Advances in Neural Information Processing Systems, pp. 6594–6604 (2017)

    Google Scholar 

  4. Garzelli, L., et al.: Improving the prediction of lung adenocarcinoma invasive component on CT: value of a vessel removal algorithm during software segmentation of subsolid nodules. Eur. J. Radiol. 100, 58–65 (2018)

    Article  Google Scholar 

  5. Jin, D., Xu, Z., Tang, Y., Harrison, A.P., Mollura, D.J.: CT-realistic lung nodule simulation from 3D conditional generative adversarial networks for robust lung segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 732–740. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_81

    Chapter  Google Scholar 

  6. Leopold, H.A., Orchard, J., Zelek, J.S., Lakshminarayanan, V.: PixelBNN: augmenting the PixelCNN with batch normalization and the presentation of a fast architecture for retinal vessel segmentation. J. Imaging 5, 2 (2017)

    Google Scholar 

  7. Liu, D., et al.: Unsupervised instance segmentation in microscopy images via panoptic domain adaptation and task re-weighting. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  8. Liu, M., Zhang, C., Zhang, Z. Multi-scale deep convolutional nets with attention model and conditional random fields for semantic image segmentation. In: 2019 2nd International Conference on Signal Processing and Machine Learning, SPML 2019 (2019)

    Google Scholar 

  9. MacMahon, H., et al.: Guidelines for management of incidental pulmonary nodules detected on CT images: from the Fleischner society 2017. Radiology 284(1), 228–243 (2017)

    Article  Google Scholar 

  10. Meraj, T., Rauf, H.T., Zahoor, S., Hassan, A., Shoaib, U.: Lung nodules detection using semantic segmentation and classification with optimal features. Neural Comput. Appl. 33, 10737–10750 (2020)

    Article  Google Scholar 

  11. Munir, K., Elahi, H., Ayub, A., Frezza, F., Rizzi, A.: Cancer diagnosis using deep learning: a bibliographic review. Cancers 11(9), 1235 (2019)

    Article  Google Scholar 

  12. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  13. Sun, Y., Wang, J. Automatic method for lung segmentation with juxta-pleural nodules from thoracic CT based on border separation and correction. In: 2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), pp. 330–335. IEEE (2016)

    Google Scholar 

  14. Wang, S., et al.: Central focused convolutional neural networks: developing a data-driven model for lung nodule segmentation. Med. Image Anal. 40, 172–183 (2017)

    Article  Google Scholar 

  15. Wang, W., Lu, Y., Wu, B., Chen, T., Chen, D.Z., Wu, J.: Deep active self-paced learning for accurate pulmonary nodule segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 723–731. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_80

    Chapter  Google Scholar 

  16. Wang, Z., Xu, J., Liu, L., Zhu, F., Shao, L.: RANet: ranking attention network for fast video object segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3978–3987 (2019)

    Google Scholar 

  17. Xu, H., Gao, Y., Yu, F., Darrell, T.: End-to-end learning of driving models from large-scale video datasets. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2174–2182 (2017)

    Google Scholar 

  18. Zhang, P., Li, J., Wang, Y., Pan, J.: Domain adaptation for medical image segmentation: a meta-learning method. J. Imaging 7(2), 31 (2021)

    Article  Google Scholar 

  19. Zhao, J.-J., Ji, G.-H., Xia, Y., Zhang, X.-L.: Cavitary nodule segmentation in computed tomography images based on self-generating neural networks and particle swarm optimisation. Int. J. Bio-Inspired Comput. 7(1), 62–67 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xiao, N., Luo, S., Qiang, Y., Zhao, J., Lian, J. (2021). DPACN: Dual Prior-Guided Astrous Convolutional Network for Adhesive Pulmonary Nodules Segmentation on CT Sequence. In: Ma, H., et al. Pattern Recognition and Computer Vision. PRCV 2021. Lecture Notes in Computer Science(), vol 13021. Springer, Cham. https://doi.org/10.1007/978-3-030-88010-1_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88010-1_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88009-5

  • Online ISBN: 978-3-030-88010-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics