Skip to main content

Improved Differential-ML Distinguisher: Machine Learning Based Generic Extension for Differential Analysis

  • Conference paper
  • First Online:
Information and Communications Security (ICICS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12919))

Included in the following conference series:

Abstract

At CRYPTO 2019, Gohr first proposes a deep learning based differential analysis on round-reduced Speck32/64. Then Yadav \(et \, al.\) present a framework to construct the differential-ML (machine learning) distinguisher by combining the traditional differential distinguisher and the machine learning based differential distinguisher, which breaks the limit of the ML differential distinguisher on the number of attack rounds. However, the results obtained based on this method are not necessarily better than the results gained by traditional analysis. In this paper, we offer three novel greedy strategies (\(M_1\), \(M_2\) and \(M_3\)) to solve this problem. The strategy \(M_1\) provides better differential-ML distinguishers by considering all combinations of classical differential distinguishers and ML differential distinguishers. And the strategy \(M_2\) uses the best ML differential distinguishers to splice classical differential distinguishers forward, while the strategy \(M_3\) adopts the best classical differential distinguishers to splice ML differential distinguishers. As proof of works, we apply our methods to round-reduced Speck32/64, Speck48/72 and Speck64/96 and get some improved cryptanalysis results. For the construction of differential-ML distinguishers, we can reach 11-round Speck32/64, 14-round Speck48/72 and 18-round Speck64/96 with \(2^{27}\), \(2^{45}\), \(2^{62}\) data respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albrecht, M.R., Leander, G.: An all-in-one approach to differential cryptanalysis for small block ciphers. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 1–15. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35999-6_1

    Chapter  MATH  Google Scholar 

  2. Baksi, A., Breier, J., Dong, X., Yi, C.: Machine learning assisted differential distinguishers for lightweight ciphers. IACR 2020, 571 (2020). https://eprint.iacr.org/2020/571

  3. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The SIMON and SPECK lightweight block ciphers. In: Proceedings of the 52nd Annual Design Automation Conference, pp. 175:1–175:6. ACM (2015). https://doi.org/10.1145/2744769.2747946

  4. Bellini, E., Rossi, M.: Performance comparison between deep learning-based and conventional cryptographic distinguishers. IACR 2020, 953 (2020). https://eprint.iacr.org/2020/953

  5. Bernstein, D.J., et al.: Gimli: a cross-platform permutation. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 299–320. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_15

    Chapter  Google Scholar 

  6. Biham, E., Shamir, A.: Differential cryptanalysis of des-like cryptosystems. J. Cryptol. 4(1), 3–72 (1991). https://doi.org/10.1007/BF00630563

  7. Biryukov, A., Cannière, C.D.: Data encryption standard (DES). In: van Tilborg, H.C.A., Jajodia, S. (eds.) Encyclopedia of Cryptography and Security, pp. 295–301. Springer, Heidelberg (2011). https://doi.org/10.1007/978-1-4419-5906-5_568

  8. Biryukov, A., Roy, A., Velichkov, V.: Differential analysis of block ciphers SIMON and SPECK. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 546–570. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46706-0_28

    Chapter  Google Scholar 

  9. Bogdanov, A., et al.: PRESENT: an ultra-lightweight block cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2_31

    Chapter  Google Scholar 

  10. CPLEX: Cplex optimizer (1988). https://www.ibm.com/analytics/cplex-optimizer

  11. Cui, T., Jia, K., Fu, K., Chen, S., Wang, M.: New automatic search tool for impossible differentials and zero-correlation linear approximations. IACR 2016, 689 (2016). http://eprint.iacr.org/2016/689

  12. Dinur, I.: Improved differential cryptanalysis of round-reduced speck. In: Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 147–164. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13051-4_9

    Chapter  Google Scholar 

  13. Fu, K., Wang, M., Guo, Y., Sun, S., Hu, L.: MILP-based automatic search algorithms for differential and linear trails for speck. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 268–288. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-5_14

    Chapter  Google Scholar 

  14. Gerault, D., Minier, M., Solnon, C.: Constraint programming models for chosen key differential cryptanalysis. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 584–601. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44953-1_37

    Chapter  Google Scholar 

  15. Gohr, A.: Improving attacks on round-reduced speck32/64 using deep learning. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 150–179. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_6

    Chapter  Google Scholar 

  16. Gurobi: Gurobi optimizer (2008). http://www.gurobi.com

  17. Jain, A., Kohli, V., Mishra, G.: Deep learning based differential distinguisher for lightweight cipher PRESENT. IACR 2020, 846 (2020). https://eprint.iacr.org/2020/846

  18. Liu, Y., Witte, G.D., Ranea, A., Ashur, T.: Rotational-XOR cryptanalysis of reduced-round SPECK. IACR Trans. Symmetric Cryptol. 2017(3), 24–36 (2017). https://doi.org/10.13154/tosc.v2017.i3.24-36

  19. Matsui, M.: On correlation between the order of S-boxes and the strength of DES. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 366–375. Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0053451

    Chapter  Google Scholar 

  20. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis using mixed-integer linear programming. In: Wu, C.-K., Yung, M., Lin, D. (eds.) Inscrypt 2011. LNCS, vol. 7537, pp. 57–76. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34704-7_5

    Chapter  MATH  Google Scholar 

  21. Polimón, J., Hernández-Castro, J.C., Estévez-Tapiador, J.M., Ribagorda, A.: Automated design of a lightweight block cipher with genetic programming. Int. J. Knowl. Based Intell. Eng. Syst. 12(1), 3–14 (2008)

    Google Scholar 

  22. Sasaki, Y., Todo, Y.: New impossible differential search tool from design and cryptanalysis aspects - revealing structural properties of several ciphers. In: Coron, J., Nielsen, J.B. (eds.) EUROCRYPT 2017 (2017)

    Google Scholar 

  23. Sun, L., Wang, W., Wang, M.: Automatic search of bit-based division property for ARX ciphers and word-based division property. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 128–157. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_5

    Chapter  Google Scholar 

  24. Sun, S., et al.: Analysis of aes, skinny, and others with constraint programming. IACR Trans. Symmetric Cryptol. 2017(1), 281–306 (2017). https://doi.org/10.13154/tosc.v2017.i1.281-306

  25. Sun, S., et al.: Towards finding the best characteristics of some bit-oriented block ciphers and automatic enumeration of (related-key) differential and linear characteristics with predefined properties (2015)

    Google Scholar 

  26. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security evaluation and (related-key) differential characteristic search: application to SIMON, PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 158–178. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_9

    Chapter  Google Scholar 

  27. Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., Liu, C.: A survey on deep transfer learning. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds.) ICANN 2018. LNCS, vol. 11141, pp. 270–279. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01424-7_27

    Chapter  Google Scholar 

  28. Wang, M.: Differential Cryptanalysis of reduced-round PRESENT. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 40–49. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68164-9_4

    Chapter  Google Scholar 

  29. Wang, Y., Yao, Q., Kwok, J.T., Ni, L.M.: Generalizing from a few examples: a survey on few-shot learning. ACM Comput. Surv. 53(3), 63:1–63:34 (2020). https://doi.org/10.1145/3386252

  30. Wheeler, D.J., Needham, R.M.: TEA, a tiny encryption algorithm. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 363–366. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60590-8_29

    Chapter  MATH  Google Scholar 

  31. Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP method to searching integral distinguishers based on division property for 6 lightweight block ciphers. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 648–678. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_24

    Chapter  Google Scholar 

  32. Yadav, T., Kumar, M.: Differential-ML distinguisher: machine learning based generic extension for differential cryptanalysis. IACR 2020, 913 (2020). https://eprint.iacr.org/2020/913

  33. Zhang, Y., Sun, S., Cai, J., Hu, L.: Speeding up MILP aided differential characteristic search with Matsui’s strategy. In: Chen, L., Manulis, M., Schneider, S. (eds.) ISC 2018. LNCS, vol. 11060, pp. 101–115. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99136-8_6

    Chapter  Google Scholar 

  34. Zhou, C., Zhang, W., Ding, T., Xiang, Z.: Improving the MILP-based security evaluation algorithm against differential/linear cryptanalysis using A divide-and-conquer approach. IACR Trans. Symmetric Cryptol. 2019(4), 438–469 (2019). https://doi.org/10.13154/tosc.v2019.i4.438-469

Download references

Acknowledgment

This work is supported by the National Natural Science Foundation of China (No. 62072181), the National Cryptography Development Fund (No. MMJJ20180201), the International Science and Technology Cooperation Projects (No. 61961146004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaoli Wang .

Editor information

Editors and Affiliations

Appendices

A The Best Differential Trails for Speck

Table 4. The best differential trails for Speck

B The Partial Results for Sect. 5

Table 5. The partial results of the strategy \(M_2\) for Speck
Table 6. The partial results of the strategy \(M_3\) for Speck

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, G., Wang, G. (2021). Improved Differential-ML Distinguisher: Machine Learning Based Generic Extension for Differential Analysis. In: Gao, D., Li, Q., Guan, X., Liao, X. (eds) Information and Communications Security. ICICS 2021. Lecture Notes in Computer Science(), vol 12919. Springer, Cham. https://doi.org/10.1007/978-3-030-88052-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88052-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88051-4

  • Online ISBN: 978-3-030-88052-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics