Skip to main content

A Second-Order Adaptive Network Model for Shared Mental Models in Hospital Teamwork

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12876))

Included in the following conference series:

  • 1666 Accesses

Abstract

This paper describes a second-order adaptive network model for mental processes making use of shared mental models for team performance. The paper illustrates the value of adequate shared mental models for safe and efficient team performance and in cases of imperfections of such shared team models how this complicates the team performance. It is illustrated for a context of a medical team performing a tracheal intubation. Simulations illustrate how the adaptive network model is able to address the type of complications that can occur in realistic scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abraham, W.C., Bear, M.F.: Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci. 19(4), 126–130 (1996)

    Article  Google Scholar 

  2. Bhalwankar, R., Treur, J.: Modeling the development of internal mental models by an adaptive network model. In: Proc. of the 11th Annual International Conference on Brain-Inspired Cognitive Architectures for AI, BICA*AI 2020. Procedia Computer Science, Elsevier (2021)

    Google Scholar 

  3. Bhalwankar, R., Treur, J.: A Second-Order Adaptive Network Model for Learner-Controlled Mental Model Learning Processes. In: Benito, R.M., Cherifi, C., Cherifi, H., Moro, E., Rocha, L.M., Sales-Pardo, M. (eds.) COMPLEX NETWORKS 2020 2020. SCI, vol. 944, pp. 245–259. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-65351-4_20

    Chapter  Google Scholar 

  4. Burtscher, M.J., Kolbe, M., Wacker, J.: Interaction of team mental models and monitoring behaviors predict team performance in simulated anesthesia inductions. J. Exp. Psychol. Appl. 17(3), 257–269 (2011)

    Article  Google Scholar 

  5. Burtscher, M., Manser, T.: Team mental models and their potential to improve teamwork and safety: a review and implications for future research in healthcare. Saf. Sci. 50(5), 1344–1354 (2012). https://doi.org/10.1016/j.ssci.2011.12.033

    Article  Google Scholar 

  6. Craik, K.J.W.: The Nature of Explanation. University Press, Cambridge, MA (1943)

    Google Scholar 

  7. De Kleer, J., Brown, J.: Assumptions and ambiguities in mechanistic mental models. In: Gentner, D., Stevens, A. (eds.), Mental Models, pp. 155–190. Lawrence Erlbaum Associates, Hillsdale, NJ (1983)

    Google Scholar 

  8. Dionne, S.D., Sayama, H., Hao, C., Bush, B.J.: The role of leadership in shared mental model convergence and team performance improvement: an agent-based computational model. Leadersh. Q. 21(2010), 1035–1049 (2010)

    Article  Google Scholar 

  9. Fischhof, B., Johnson, S.: Organisational Decision Making. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  10. Garcia, R.: Stress, metaplasticity, and antidepressants. Curr. Mol. Med. 2, 629–638 (2002)

    Article  Google Scholar 

  11. Hebb, D.O.: The Organization of Behavior: A Neuropsychological Theory. John Wiley and Sons, New York (1949)

    Google Scholar 

  12. Higgs, A., et al.: Guidelines for the management of tracheal intubation of critically ill adults. Br. J. Anaesth. 120(2), 323–352 (2018)

    Article  Google Scholar 

  13. Jones, P.E., Roelofsma, P.H.M.P.: The potential for social contextual and group biases in team decision making: biases, conditions and psychological mechanisms. Ergonomics 43(8), 1129–1152 (2000)

    Article  Google Scholar 

  14. Mathieu, J.E., Hefner, T.S., Goodwin, G.F., Salas, E., Cannon-Bowers, J.A.: The influence of shared mental models on team process and performance. J. Appl. Psychol. 85(2), 273–283 (2000)

    Article  Google Scholar 

  15. Outland, N.B.: A computational cognitive architecture for exploring team mental models, p. 289. College of Science and Health Theses and Dissertations. https://via.library.depaul.edu/csh_etd/289 (2019)

  16. Scheutz, M.: Computational Mechanisms for Mental Models in Human-Robot Interaction. In: Shumaker, R. (ed.) VAMR 2013. LNCS, vol. 8021, pp. 304–312. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39405-8_34

    Chapter  Google Scholar 

  17. Seo, S., Kennedy-Metz, L.R., Zenati, M.A., Shah, J.A., Dias, R.D., Unhelkar, V.V.: Towards an AI Coach to Infer Team Mental Model Alignment in Healthcare. Department of Computer Science, Rice University, Houston, TX, USA (2021)

    Google Scholar 

  18. Todd, J.: Audit of compliance with WHO surgical safety checklist and building a shared mental model in the operating theatre. BJM Leader 2(1), 32–135 (2018)

    Google Scholar 

  19. Treur, J.: Network-Oriented Modeling for Adaptive Networks: Designing Higher-Order Adaptive Biological, Mental and Social Network Models. Springer Nature, Cham (2020)

    Book  Google Scholar 

  20. Van Ments, L., Treur, J.: Reflections on dynamics, adaptation and control: a cognitive architecture for mental models. Cognitive Syst. Res. 70, 1–9 (2021)

    Article  Google Scholar 

  21. van Ments, L., Treur, J., Klein, J., Roelofsma, P.: A computational network model for shared mental models in hospital operation rooms. In: Mahmud, M., Kaiser, M.S., Vassanelli, S., Dai, Q., Zhong, N. (eds.) Brain Informatics. BI 2021. LNCS, vol 12960. pp. 67–78. Springer, Cham. https://doi.org/10.1007/978-3-030-86993-9_7

  22. Williams, D.: The mind as a predictive modelling engine: generative models, structural similarity, and mental representation. Ph.D. Thesis. University of Cambridge, UK (2018)

    Google Scholar 

  23. Wilson, A.: Creating and applying shared mental models in the operating room. J. Perioper. Nurs. 32(3), 33–36 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Treur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

van Ments, L., Treur, J., Klein, J., Roelofsma, P. (2021). A Second-Order Adaptive Network Model for Shared Mental Models in Hospital Teamwork. In: Nguyen, N.T., Iliadis, L., Maglogiannis, I., Trawiński, B. (eds) Computational Collective Intelligence. ICCCI 2021. Lecture Notes in Computer Science(), vol 12876. Springer, Cham. https://doi.org/10.1007/978-3-030-88081-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88081-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88080-4

  • Online ISBN: 978-3-030-88081-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics