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Abstract. In this article we address the optimisation of pheromone
communication used for the mobility management of a swarm of Un-
manned Aerial Vehicles (UAVs) for surveillance applications. A genetic
algorithm is proposed to optimise the exchange of pheromone maps used
in the CACOC (Chaotic Ant Colony Optimisation for Coverage) mobil-
ity model which improves the vehicles’ routes in order to achieve unpre-
dictable trajectories as well as maximise area coverage. Experiments are
conducted using realistic simulations, which additionally permit to assess
the impact of packet loss ratios on the performance of the surveillance
system, in terms of reliability and area coverage.

Keywords: unmanned aerial vehicle · pheromones · evolutionary algo-
rithm · surveillance system · swarm robotics · mobility model.

1 Introduction

Unmanned Aerial Vehicles (UAVs) initially developed for military applications
are nowadays paving their way into multiple civilian domains [10]. These include
cargo delivery, road traffic surveillance, fire fighting, environmental monitoring,
architecture surveillance, and farming. Considering surveillance applications [19],
UAVs allow to provide a mobile and controllable bird’s-eye view for a fraction
of the cost existing solutions (e.g. helicopters). However, UAVs are typically
small to medium size battery powered devices which therefore feature limited
flight time and payload capacity. One promising approach to overcome those
limitations is to use multiple autonomous UAVs simultaneously, also referred to
as a swarm, where collaborations with other types of vehicles [18] are possible.

Unpredictability of vehicle trajectories [5] in surveillance scenarios is a desired
characteristic to prevent the use of possible detection strategies, especially in
military applications where an attacker is present. Some mobility models, like
CROMM (Chaotic Rössler Mobility Model) [13], use chaotic trajectories to avoid
route prediction but UAVs tend to visit the same locations frequently. CACOC
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(Chaotic Ant Colony Optimisation for Coverage) [13] is another chaos based
mobility model conceived to address that issue by using virtual pheromones,
shared between UAVs to improve area coverage. These pheromones must be
efficiently exchanged between UAVs to ensure a good global performance of the
swarm. However, communications in such highly dynamic ad hoc networks are
very challenging [8].

This article proposes to evaluate and optimise the communications between
autonomous UAVs as members of a swarm performing surveillance tasks. More
precisely, the parameters of CACOC+ (a parameterised version of CACOC) are
optimised using a genetic algorithm in order to maximise area coverage, even
when communications are restricted in packet size, and UAVs have to base their
mobility decisions on their own local data, e.g. their virtual pheromone map.
Experiments using realistic simulations permit to consider limited communica-
tion range, transmissions consuming energy, and radio packets that might be
lost before reaching destination due to interferences.

The remainder of this paper is organised as follows. In the next section, we
review the state of the art related to our proposal. In Section 3 our approach
is presented. The optimisation algorithm is described in Section 4. Our case
studies and experimental results are presented and analysed in Section 5. Finally,
Section 6 brings discussion and future work.

2 Related Work

UAV communications has been addressed by several authors. In [1] a concept-
level proposal and literature review for the use of cellular networks as the com-
munication infrastructure for UAV swarms is presented. The authors highlight
the practically unlimited range of communications using cellular data coverage
(3G in the United States) and the reliability of its base stations. This proposal
is tested in the real world using custom built quadcopters and the MAVLink
communication protocol [3]. In [11] the authors address the problem of UAV
swarm formation in areas covered by 3G/4G mobile networks and present an
algorithm for multi-robot coordination which is also bandwidth-efficient. The
proposed protocol for UAV coordination uses the group-cast and group manage-
ment facilities of the authors’ mobile communication middleware. Several test
were done in a swarm of ten simulated UAVs.

In [4] a study about communication performance between UAVs in the 2.4
GHz band is presented. It takes into account how existing interferences and
packet loss ratio affect a stable communication link. Their findings include that
the degree of vibration generated by propellers interferes with the link signal,
although the larger interferences come from the remote controllers, since they
work in the same frequency band. Delay in the wireless network and its stability
are analysed in [21]. A swarm of three cellular-connected UAVs, positioned in a
triangle formation, is proposed to be optimised. The maximum allowable delay
required to prevent the instability of the swarm is also analysed. Path planning
for multiple robots for persistent surveillance with connectivity constraints is
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studied in [15]. Greedy and cooperative strategies are proposed for the robots
to reach all sensing locations, being the performance of the former higher when
the number of robots or the communication range is large enough.

In this article we focus on the optimisation of the communications between
UAVs by controlling the amount of data shared by drones during their interac-
tions. The use of ad hoc communications allows to work in a private network
with an increment in the security of the radio links. Although reliable commu-
nications are assumed, we investigate the consequences of packet loss. To the
best of our knowledge, this study involving the optimisation of the parameters
of CACOC+, to deal with communication constraints and pheromone maps, has
not been done before. In the following section we describe CACOC+, followed
by the bio-inspired algorithm proposed for optimising its parameters.

3 Pheromone Based Swarm Mobility

In a previous article [16] the optimisation of the CACOC mobility model to max-
imise area coverage was proposed. CACOC is a mobility model for UAV swarms
that uses chaotic dynamics and pheromone methods for improving area coverage
using unpredictable trajectories. When using CACOC, UAVs leave pheromones
as they move in the environment to indicate recently covered areas. Pheromones
have a repulsive effect and thus, aim to better spread UAVs in the area avoiding
visiting the same spots too frequently. As pheromone trails evaporate, a UAV
will eventually visit again the same region of the map.

The diagram of CACOC is shown in Fig. 1. The next moving direction is
calculated using chaotic dynamics when there are no pheromones in the UAV’s
neighbourhood. Values from the first return map (ρ) from a chaotic attractor,
obtained by solving a Rössler ordinary differential equation system [14], are
used to replace the random part of the mobility model, as proposed in [13].
On the other hand, when virtual pheromones are detected, they work as re-
pellers, stochastically modifying the UAV’s next moving direction. The amount
of pheromones detected in each scanned direction is used to calculate the prob-
abilities PL = phe total−phe left

2×phe total , PR = phe total−phe right
2×phe total , for the next move.

In [16], three parameters for CACOC were proposed to adapt this model to
different scenarios and improve area coverage (it will be referred to as CACOC+
hereafter). These parameters are depicted in Fig. 2, and are described as: the
optimised amount of pheromones left by each vehicle (τa), the pheromone radius
(τr) and maximum detection distance (τd). The pheromone decay rate used is
the same value as in CACOC, i.e. one unit per second.

3.1 Pheromone Communication

In previous works, CACOC and CACOC+ assumed perfect communications,
where vehicles were always in their respective communication range, and there
was no packet loss. This article considers a more realistic scenario featuring
limited communication ranges and interferences by using the well-known ARGoS
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Fig. 1. Diagram of the CACOC (and CACOC+) mobility models.

Fig. 2. Three parameters proposed for CACOC+.

simulator [12] and its communication model between robots. Additionally, in this
study we address the validation of CACOC+ in a different simulator as it was
previously tested only in the HUNTED Sim [17].

As part of a swarm of autonomous vehicles, each member has to take local
decisions to achieve a common global goal, e.g. maximising area coverage. In
CACOC+ each vehicle has its own local pheromone map composed by its own
pheromone trails and portions of pheromone maps received from the other ve-
hicles in the scenario (figures 3(b) and 3(c)). They are shared by using ad hoc
communications which are subject to disruptions and interferences. The com-
plete pheromone map is represented in Fig. 3(a).

Moreover, larger data packets imply more energy consumption and a higher
probability of data loss. Consequently, we propose the optimisation of the CA-
COC+ parameters where UAVs share different amount of data, and an analysis
of how it affects the system performance when each swarm member only knows
partially the pheromone map. Therefore, our problem representation is the vec-
tor x = {τa1

, τr1 , τd1
, . . . , τaN

, τrN , τdN
} where N is the number of UAVs in the

swarm. Thus, vector x defines the configuration of the surveillance system which
comprises the parameters of each UAV in the swarm represented by integer val-
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(a) Full pheromone map (b) UAV1’s known map (c) UAV2’s known map

Fig. 3. Pheromone map shared between UAVs according to their communication range.
Each UAV knows its own map and the map portions received from the others (dashed
squares in (b) and (c)).

ues. Note that the amount of shared pheromones is not included in the problem
representation since it is part of the characteristics of each case study.

3.2 Collision Avoidance

The implemented collision avoidance algorithm relies on repelling forces between
UAVs. Given u ∈ UAV s, the distances between u and the rest of vehicles in
UAV s are calculated. Those UAVs closer than a minimum distance δmin (a
fixed parameter, e.g. 6 metres) modify the vector ru, which will contain the
resultant repelling force for u, to be used to modify its trajectory.

We have implemented this straightforward algorithm as UAVs following their
mobility model decisions will eventually divert to no colliding trajectories avoid-
ing any possible deadlock. As a consequence of the implemented algorithm, which
requires to know the position of the other UAVs in the neighbourhood, commu-
nications between vehicles also include the coordinates of the transmitting UAV.

4 Optimisation Algorithm

We have designed a Genetic Algorithm (GA) which uses operators for continuous
optimisation, in order find the parameterisation of CACOC+ which maximises
the area coverage for different pheromone block sizes shared between UAVs.
The proposed GA is based on an Evolutionary Algorithm (EA) [6, 9] which is an
efficient method for solving combinatorial optimisation problems. EAs simulate
processes present in evolution such as natural selection, gene recombination after
reproduction, gene mutation, and the dominance of the fittest individuals over
the weaker ones. This is a generational GA where an offspring of λ individuals is
obtained from the population µ, so that the auxiliary population Q contains the
same number of individuals as the population Pop. The number of individuals
was set to 16 since their evaluations require expensive simulations.

Algorithm 1 shows the pseudocode of the GA. After initializing t and Q(0),
Pop(0) is generated by using the Initialization function. Then, the main loop
is executed while the TerminationCondition is not fulfilled (in our case we stop
after 1,000 evaluations). Into the main loop, the Selection operator is applied
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Algorithm 1 Pseudocode of the Genetic Algorithm (GA).

procedure GA(Ni, Pc, Pm)
t← ∅
Q(0)← ∅ . Q=auxiliary population
Pop(0)← Initialization(Ni) . Pop=population
while not TerminationCondition() do

Q(t)← Selection(Pop(t))
Q(t)← Crossover(Q(t), Pc)
Q(t)←Mutation(Q(t), Pm)
Evaluation(Q(t))
Pop(t+ 1)← Replacement(Q(t), Pop(t))
t← t+ 1

to populate Q(t) using Binary Tournament [7]. Next, the Crossover operator is
applied and after that, the Mutation operator slightly modifies the new offspring.
Finally, after the Evaluation of Q(t), the new population Pop(t+ 1) is obtained
by applying the Replacement operator. It consists in selecting the best individual
in Q(t) to replace the worst one in Pop(t) if it is best valued [2]. This contributes
to avoid population stagnation and preserves its diversity.

4.1 Crossover Operator

The crossover operator implements the one-point crossover [9] using vehicle con-
figuration blocks. Two individuals x and y are taken from the population Q and
the recombination operator is applied to them if a generated random number is
less than the crossover probability Pc = 0.9. The crossing point is then calcu-
lated using a uniformly distributed, random integer value cp. The crossover is
made at UAV level: as there are three parameters per UAV, possible values of cp
are 3, 6, 9, etc. The UAVs’ configurations in x and y after the cp-th position are
swapped and added to the destination population Q′. This process is repeated
for the rest of the individuals in Q (taken in groups of two) to complete the new
population Q′, to be subject to mutation.

4.2 Mutation Operator

The mutation operator (Algorithm 2) is based on the one proposed in [2], and
adapted to our problem characteristics. First, each position of the individual
x in Q is subject to mutation according to the mutation probability Pm = 1

L ,
where L is the length of the solution vector. If a component of x is selected
for mutation, a new M value is randomly calculated according to a uniform
probability distribution. Then, the value of ∆ is obtained taking into account the
bounds of the parameter associated to each component of x, and k (Equation 1).
The value of k begins in 1 and exponentially decreases during the execution of
the algorithm to increase the exploration in the early stages and focus on the
exploitation of the solutions found, in the last generations of the GA.
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Algorithm 2 Pseudocode of the Mutation Operator.

function Mutation(Q,Pm, k)
Q′ ← ∅
for {x} ∈ Q do

x′ ← x
for i← 1, L do . L = length(x)

if rnd() < Pm then . mutation probability
M ← randInt(1, 10)
if rnd() < 0.5 then . increment/decrement

x′[i]←min(x[i] +∆(i,M, k), UpBd(x[i]))
else

x′[i]←max(x[i]−∆(i,M, k), LowBd(x[i]))

Q′ ← Q′ ∪ {x′}
return Q′

∆(i,M, k) = k × UpBd(x[i])− LowBd(x[i])

M
(1)

The current value of the parameter in the solution vector is either increased
or decreased (equally probable) taking into account the parameters’ bounds, and
finally, the new individual x′ is added to the new population Q′.

4.3 Fitness Function

Our objective is maximising the covered area to improve the surveillance per-
formed by the UAV swarm under different communication restrictions. There-
fore, the evaluation of each system configuration is achieved taking into account
the percentage of area visited during the simulation time (600 seconds). Each
scenario is mapped as a lattice of 100x100 cells for evaluation purpose. We as-
sumed that a UAV explores an area of 3x3 cells at each simulation tick (note that
they are still moving in the continuous coordinated space provided by ARGoS).
Consequently, the fitness value of a given configuration is calculated as shown
in Equation 2. As we are maximising the explored area, the higher the value of
F (x), the better.

F (x) =
# of explored cells

# of cells in the scenario
(2)

5 Experiments

In this section we describe our case studies, perform the optimisation of CA-
COC+, compare its performance against CROMM and CACOC, and analyse
the effects of packet loss. Our experiments were conducted in parallel on com-
puting nodes equipped with Intel Xeon Gold 6132 @ 2.6 GHz and 128 GB of
RAM. The total optimisation time was equivalent to 12 days.
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5.1 Case Studies

We propose three case studies consisting in four scenarios each, where differ-
ent amount of pheromones are shared. Swarms of two, four and six UAVs are
analysed in each case study respectively, which begin their surveillance tasks
in the centre of the map. The four possible scenarios are: i) CACOC+ where
the entire pheromone map is shared between UAVs in communication range, ii)
CACOC+.10 where a square of 21x21 cells is shared, iii) CACOC+.05 where a
square of 11x11 cells is shared, and iv) CACOC+.00 where no pheromone map
is shared between UAVs.

The communication range is set to 10 metres where the collision avoidance
algorithm also takes place. Consequently, the communication packet also includes
the UAV’s identifier (8 bits) and its 2-D coordinates (2 x 32 bits) as every UAVs
is assumed to fly at the same altitude. All in all, packet length is 10,009 bytes in
CACOC+, 450 bytes in CACOC+.10, 130 bytes in CACOC+.05, and 9 bytes in
CACOC+.00. Note that this is actually the payload of the communication packet
as we are not considering protocol specific data in our study. The communication
layer used was “range and bearing” as provided by ARGoS.

(a) CACOC+ (b) CACOC+.10 (c) CACOC+.05 (d) CACOC+.00

Fig. 4. Pheromone transmission scenarios. In CACOC+ each UAV shares all its
pheromone map (10,000 cells). UAVs share 441 cells in CACOC+.10, 121 cells in CA-
COC+.05, and none in CACOC+.00.

Fig. 4 shows an example of the pheromone map shared by a UAV via ad
hoc wireless communications corresponding to each scenario analysed in our
approach. It is worth mentioning that each UAV has access to its own pheromone
map at any time. What a UAV receives is the portion of the global pheromone
map transmitted (known) by the other (neighbouring) UAVs. We assumed that
at the flying altitude there are no obstacles in the scenario.

5.2 CACOC+ Optimisation

We have performed 30 independent runs of the proposed GA on each case study
and scenario, i.e. 360 runs in total. GA was configured to stop after 1,000 evalu-
ations, a population of 16 individuals (λ = µ = 16), 0.9 as crossover probability
(Pc), and 1

L as mutation probability (Pm). The results obtained during the op-
timisation process are shown in Table 1.
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Table 1. Optimisation results: fitness values (average, standard deviation, and maxi-
mum) of each optimisation run for each case study and scenario.

Case Study Scenario
Fitness Friedman

Rank
Wilcoxon
p-valueAvg. SD. Max.

2 UAVs

CACOC+ 0.524 0.005 0.538 2.50 0.365

CACOC+.10 0.523 0.006 0.535 2.10 0.325

CACOC+.05 0.525 0.006 0.535 2.68 0.802

CACOC+.00 0.526 0.007 0.539 2.72 —

4 UAVs

CACOC+ 0.769 0.006 0.780 2.28 0.087

CACOC+.10 0.771 0.007 0.788 2.70 0.640

CACOC+.05 0.769 0.005 0.782 2.22 0.120

CACOC+.00 0.772 0.006 0.786 2.80 —

6 UAVs

CACOC+ 0.885 0.005 0.895 2.48 0.246

CACOC+.10 0.887 0.004 0.897 2.70 —

CACOC+.05 0.885 0.004 0.893 2.52 0.133

CACOC+.00 0.884 0.006 0.896 2.30 0.058

(a) Phero amount (τa) (b) Phero radius (τr) (c) Detection distance (τd)

Fig. 5. Average values of the CACOC+’s optimised parameters for each UAV.

It can be seen that CACOC+ achieves very similar results for all the scenarios
of each case study. Best average fitness values of CACOC+ for 2 UAVs are 0.526,
0.772 for 4 UAVs, and 0.887 for 6 UAVs. Statistical tests (Friedman Rank and
Wilcoxon p-value) show that the differences between the results of each case
study are not statistically significant (p-value always greater than 0.01). This
means that CACOC+ has compensated the lack of information about the global
pheromone map by adapting their operational parameters to keep competitive
fitness values, as shown in Fig. 5. Two UAVs show a clear parameter decreasing
pattern when less data are shared, although the others case studies do not present
such a pattern. We believe that it is due to the fact that there are more UAVs
in the scenarios and the number of iterations (including collision avoidance) are
higher as well as the complexity of the problem.
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5.3 Experimental Results

The next experiment consisted in comparing the CACOC+ results against CA-
COC and CROMM. Table 2 shows the area coverage values of those mobility
models. It can be seen that the values achieved by CACOC+ are consistent with
the fitness values previously reported. UAVs using CACOC cover less area than
CACOC+ as expected. When the UAVs controlled by CACOC were subject to
the same communication restrictions as CACOC+, their coverage values showed
bigger variability, being notably affected by the amount of pheromones shared
between them, especially when there are more pheromones in the scenario (more
UAVs). Note that each UAV still has access to its own pheromone map even if
there is no communication with its counterparts.

The lowest CROMM coverage values confirm the need of virtual pheromones
as a complement of chaotic mobility to improve the area coverage of the surveil-
lance system. All in all, CACOC+ covered up to 53.9% of the surveillance area
when using 2 UAVs, up to 78.8% when using 4 UAVs, and up to 89.7% when
using 6 UAVs. That represents a maximum increment of around 7% with re-
spect to CACOC and of around 41% with respect to CROMM. When there
are communication restrictions, CACOC+ shown increments up to 15% in area
coverage. Note that unpredictable chaotic trajectories perform unexpected turns
and usually visit the same spot (despite pheromones). This is a desired feature
in a surveillance system which, in turn, reduces the total area explored by UAVs
compared with a highly predictable lawnmower model.

Table 2. Area coverage achieved by each scenario of CACOC+. CROMM and CACOC
with the same communication restrictions are also included for comparison.

Case Study 2 UAV 4 UAV 6 UAV

CROMM 13.3% 43.5% 52.2%

CACOC 46.5% 71.0% 85.8%

CACOC.10 46.5% 68.7% 85.8%

CACOC.05 46.5% 71.6% 84.2%

CACOC.00 38.8% 70.2% 80.0%

CACOC+ 53.8% 78.0% 89.5%

CACOC+.10 53.5% 78.8% 89.7%

CACOC+.05 53.5% 78.2% 89.3%

CACOC+.00 53.9% 78.6% 89.6%

5.4 Interferences and Packet Loss

The last study comprises an analysis about the resilience of CACOC+ when it is
subject to interferences, e.g. packet loss. Fig. 6 shows the area coverage achieved
by CACOC+ subject to different packet loss probabilities. Since the collision
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avoidance algorithm also uses radio communications to detect and avoid other
UAVs, the vehicle trajectories were also affected by these new late detections
as seen in CACOC+.00. Moreover, we were unable to complete our tests up to
100% packet loss for 4 and 6 UAVs since some vehicles were closer than the
safety threshold (2 metres) and the simulation was stopped. The amount of area
covered decreased when the communication link failed, as expected. However,
in most of the analysed scenarios, before reaching very low coverage values, the
rest of the system features were degraded, e.g. the collision avoidance algorithm,
especially when the number of UAVs was higher and the collisions were more
probable. It can be seen a small increment in the area coverage for some case
studies at higher packet loss probabilities. Even if the maximum coverage (at
zero packet loss) is never reached, this counter-intuitive behaviour has to be
further analysed in a future work.

(a) 2 UAVs (b) 4 UAVs (c) 6 UAVs

Fig. 6. Area coverage achieved using CACOC+ vs. packet loss probability.

6 Conclusions and Future Work

In this article we have proposed a more realistic approach to a swarm of UAVs
using the CACOC mobility model by modelling real communication links. We
have optimised its parameterised version, CACOC+, initially proposed to im-
prove area coverage, with the aim of keeping good performance values even when
each UAV knows only its own local pheromone map. The well-known simulator
ARGoS was used in our experimentation to implement the mobility models and
the data transmission layer.

Our results show that CACOC+ still improves CACOC under these new
conditions and that the versatility of the UAV parameterisation has compensated
the reduced knowledge of the pheromone neighbourhood. Furthermore, the UAVs
trajectories, now adapted to the new environmental conditions, keep obtaining
good coverage values until the defective communications affect other aspects of
the system, such as the collision avoidance algorithm.
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As larger data packets increase the probability of transmission errors, CA-
COC+ showed to be more resilient to communications failures as the amount of
transmitted data can easily be reduced from 10,009 to 9 bytes (99.9% shorter)
without experiencing a reduction of the area explored by UAVs. The energy
consumed by vehicles was not analysed but it is assumed to be lower as their
onboard radio has a reduced duty cycle.

As a matter of future work we would like to test our approach on larger
scenarios, including more UAVs, and improve the system precision by using a
specific parameter for each UAV, to define the portion of its pheromone map to
be shared with the others. The analysis of the influence of each parameters on
the results is another interesting future work. An alternative collision avoidance
algorithm is to be tested using, for example, a different approach based on on-
board sensors. Finally, we intend to validate our trajectories using real drones
and also extend our analysis taking into account power consumption.
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