Skip to main content

Hybrid Computational Intelligence Modeling of Coseismic Landslides’ Severity

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2021)

Abstract

Coseismic Landslides (COLA) are one of the most widespread and destructive hazards to result from earthquakes in mountainous environments. They are always associated with almost instantaneous slope collapse and spreading, posing significant hazards to human lives and lifeline facilities worldwide. Current methods to identify COLA immediately after an earthquake using optical imagery are too slow to effectively inform emergency response activities. Their realistic prediction is crucial for the design of key infrastructure and to protect human lives in seismically active regions. Forecasting their severity could be extremely beneficial for the effective treatment of disastrous consequences. The goal of this research is to propose a hybrid model that takes into consideration only three of the most affordable factors to acquire, the Slope of the active areas, the Aspect and the Geological Form. Determination of their correlation could predict the severity of COLA phenomena. The dataset used in this research, comprises of 421 records for year 2003 and 767 for 2015 from the Greek island of Lefkada. The introduced hybrid model employs Fuzzy c-Means, Ensemble Adaptive Boosting and Ensemble Subspace k-Nearest Neighbor algorithms. The model managed to successfully classify the Coseismic Landslides according to their severity. The performance was high especially for the classes of major severity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ayalew, L., Kasahara, M., Yamagishi, H.: The spatial correlation between earthquakes and landslides in Hokkaido (Japan), a GIS-based analysis of the past and the future. Landslides 8, 443–448 (2011)

    Article  Google Scholar 

  2. Barlow, J., Barisin, I., Rosser, N., Petley, D., Densmore, A., Wrigth, T.: Seismically-induced mass movements and volumetric fluxes resulting from the 2010 Mw=7.2 earthquake in the Sierra Cucapah, Mexico. Geomorphology 230, 138–145 (2015)

    Article  Google Scholar 

  3. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Springer Science & Business Media (2013)

    Google Scholar 

  4. Bora, D.J., Gupta, D., Kumar, A.: A comparative study between fuzzy clustering algorithm and hard clustering algorithm. arXiv preprint arXiv:1404.6059 (2014)

  5. Calvo, T., Mayor, G., Mesiar, R. (eds.): Aggregation Operators: New Trends and Applications, vol. 97. Physica (2012)

    Google Scholar 

  6. Chang, K.T., Chiang, S.H., Hsu, M.L.: Modeling typhoon- and earthquake induced landslides in a mountainous watershed using logistic regression. Geomorphology 89(3–4), 335–347 (2006)

    Google Scholar 

  7. Collins, B.D., Kayen, R., Tanaka, Y.: Spatial distribution of landslides triggered from the 2007 Niigata Chuetsu-Oki Japan Earthquake. Eng. Geol. 127, 14–26 (2012)

    Article  Google Scholar 

  8. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)

    Article  Google Scholar 

  9. Cushing, M.: Evoluation structurale de la marge nord-ouest hellenique dans l’ile de Lefkada et ses environs (Greece nord-occidentale). Ph.D. Thesis. Univ. de Paris-Sud (XI). Centre d’ Orsay, France (1985)

    Google Scholar 

  10. Domeniconi, C., Yan, B.: Nearest neighbor ensemble. In: Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004, vol. 1, pp. 228–231. IEEE (August 2004)

    Google Scholar 

  11. Dudani, S.A.: The distance-weighted k-nearest neighbor rule. IEEE Trans. Syst. Man Cybern. 8(4), 311–313 (1978)

    Article  Google Scholar 

  12. Dunn, J.C.: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J. Cybern. 3(3), 32–57 (1973). https://doi.org/10.1080/01969727308546046

    Article  MathSciNet  MATH  Google Scholar 

  13. Fan, Z.P., Ma, J., Zhang, Q.: An approach to multiple attribute decision making based on fuzzy preference information on alternatives. Fuzzy Sets Syst. 131(1), 101–106 (2002)

    Article  MathSciNet  Google Scholar 

  14. Ath, G., et al.: GPS-derived estimates of crustal deformation in the central and north Ionian Sea, Greece: 3-yr results from NOANET continuous network data. J. Geod. 6, 62–71 (2013)

    Google Scholar 

  15. Grabowski, S.: Voting over multiple k-nn classifiers. In: Modern Problems of Radio Engineering, Telecommunications and Computer Science (IEEE Cat. No. 02EX542), pp. 223–225. IEEE (February 2002)

    Google Scholar 

  16. Hatzfeld, D., et al.: Microseismicity and strain pattern in northwestern Greece. Tectonics 14(4), 773–785 (1995)

    Article  Google Scholar 

  17. Hechenbichler, K., Schliep, K.: Weighted k-nearest-neighbor techniques and ordinal classification (2004)

    Google Scholar 

  18. Jibson, R.W., Harp, E.L., Michael, J.A.: A method for producing digital probabilistic seismic landslide hazard maps. Eng. Geol. 58, 271–289 (2000)

    Article  Google Scholar 

  19. Joutsijoki, H., Juhola, M.: Comparing the one-vs-one and one-vs-all methods in benthic macroinvertebrate image classification. In: Perner, P. (ed.) Machine Learning and Data Mining in Pattern Recognition, pp. 399–413. Springer Berlin Heidelberg, Berlin, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23199-5_30

    Chapter  Google Scholar 

  20. Keefer, D.K.: Landslides caused by earthquakes. Geol. Soc. Am. Bull. 95(4), 406–421 (1984)

    Article  Google Scholar 

  21. Khalilia, M.A., Bezdek, J., Popescu, M., Keller, J.M.: Improvements to the relational fuzzy c-means clustering algorithm. Pattern Recogn. 47(12), 3920–3930 (2014)

    Article  Google Scholar 

  22. Khalilia, M., Popescu, M.: Fuzzy relational self-organizing maps. In: 2012 IEEE International Conference on Fuzzy Systems, pp. 1–6. IEEE (June 2012)

    Google Scholar 

  23. Kritikos, T., Robinson, T.R., Davies, T.R.: Regional coseismic landslide hazard assessment without historical landslide inventories: A new approach. J. Geophys. Res. Earth Surf. 120(4), 711–729 (2015)

    Article  Google Scholar 

  24. Louvari, Ε, Kiratzi, ΑΑ, Papazachos, B.C.: The CTF and its extension to western Lefkada Island. Tectonophysics 308, 223–236 (1999)

    Article  Google Scholar 

  25. Meunier, P., Hovius, N., Haines, A.J.: Regional patterns of earthquake-triggered landslides and their relation to ground motion. Geophys. Res. Lett. 34(20), L20408 (2007)

    Article  Google Scholar 

  26. Papathanassiou, G., Pavlides, S., Ganas, A.: The 2003 Lefkada earthquake: field observation and preliminary microzonation map based on liquefaction potential index for the town of Lefkada. Eng. Geol. 82, 12–31 (2005)

    Article  Google Scholar 

  27. Papathanassiou, G., Valkaniotis, S., Ganas, A., Pavlides, S.: GIS-based statistical analysis of the spatial distribution of earthquake-induced landslides in the island of Lefkada, Ionian Islands, Greece. Landslides 10(6), 771–783 (2012). https://doi.org/10.1007/s10346-012-0357-1

    Article  Google Scholar 

  28. Papathanassiou, G., Valkaniotis, S., Ath, G., Grendas, N., El, K.: The November 17th, 2015 Lefkada (Greece) strike-slip earthquake: field mapping of generated failures and assessment of macroseismic intensity ESI-07. Eng. Geol. 220, 13–30 (2017)

    Article  Google Scholar 

  29. Papathanassiou, G., Valkaniotis, S., Ganas, A.: Spatial patterns, controlling factors and characteristics of landslides triggered by strike-slip faulting earthquakes; case study of Lefkada island, Greece. Bull. Eng. Geol. Environ., submitted (2020)

    Google Scholar 

  30. Psathas, A., Papaleonidas, A., Iliadis, L.: Machine Learning Modeling of Human Activity Using PPG Signals. In: Nguyen, N.T., Hoang, B.H., Huynh, C.P., Hwang, D., Trawiński, B., Vossen, G. (eds.) Computational Collective Intelligence: 12th International Conference, ICCCI 2020, Da Nang, Vietnam, November 30 – December 3, 2020, Proceedings, pp. 543–557. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-63007-2_42

    Chapter  Google Scholar 

  31. Psathas, A., Papaleonidas, A., Papathanassiou, G., Valkaniotis, S., Iliadis, L.: Classification of Coseismic Landslides Using Fuzzy and Machine Learning Techniques. In: Iliadis, L., Angelov, P.P., Jayne, C., Pimenidis, E. (eds.) Proceedings of the 21st EANN (Engineering Applications of Neural Networks) 2020 Conference: Proceedings of the EANN 2020, pp. 15–31. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-48791-1_2

    Chapter  Google Scholar 

  32. Robinson, T.R., et al.: Rapid post-earthquake modelling of coseismic landslide magnitude and distribution for emergency response decision support. Nat. Hazards Earth Syst. Sci. Discuss. 17, 1521–1540 (2017)

    Article  Google Scholar 

  33. Wei, G., Lu, M.A.O.: Dual hesitant Pythagorean fuzzy Hamacher aggregation operators in multiple attribute decision making. Arch. Control Sci. 27(3), 365–395 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasios Panagiotis Psathas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Psathas, A.P., Papaleonidas, A., Papathanassiou, G., Iliadis, L., Valkaniotis, S. (2021). Hybrid Computational Intelligence Modeling of Coseismic Landslides’ Severity. In: Nguyen, N.T., Iliadis, L., Maglogiannis, I., Trawiński, B. (eds) Computational Collective Intelligence. ICCCI 2021. Lecture Notes in Computer Science(), vol 12876. Springer, Cham. https://doi.org/10.1007/978-3-030-88081-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88081-1_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88080-4

  • Online ISBN: 978-3-030-88081-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics