Skip to main content

An Implementation of Formal Framework for Collective Systems in Air Pollution Prediction System

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2021)

Abstract

Greater attention to the quality of life forces increased activity in the field of air quality monitoring. Many cities official perceive air pollution as an increasing issue worth investigating and managing. Thus, research focuses on delivering reliable real-time information on pollutants across the city area. The main focus of this article is the presentation of a collective framework to predict air pollution implementation. This solution allows informing about air pollution in places where no meters are available. The experimental results showed that the collective framework emerges the collective members’ knowledge and delivers prediction better than any algorithm used for agent predictions. It proves that collectives achieve better results than their members.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akita, Y., Chen, J.C., Serre, M.L.: The moving-window Bayesian maximum entropy framework: estimation of PM 2.5 yearly average concentration across the contiguous united states. J. Exposure Sci. Environ. Epidemiol. 22(5), 496–501 (2012)

    Article  Google Scholar 

  2. Armstrong, J.S.: Combining forecasts: the end of the beginning or the beginning of the end? Int. J. Forecast. 5(4), 585 (1989)

    Article  Google Scholar 

  3. Atkinson, R.W., et al.: Acute effects of particulate air pollution on respiratory admissions: results from APHEA 2 project. Am. J. Respir. Crit. Care Med. 164(10), 1860–1866 (2001)

    Article  Google Scholar 

  4. Bandemer, H., Gebhardt, A.: Bayesian fuzzy kriging. Fuzzy Sets Syst. 112(3), 405–418 (2000)

    Article  MathSciNet  Google Scholar 

  5. Bardossy, A., Bogardi, I., Kelly, W.: Kriging with imprecise (fuzzy) variograms. I: theory. Math. Geol. 22(1), 63–79 (1990). https://doi.org/10.1007/BF00890297

    Article  MathSciNet  MATH  Google Scholar 

  6. Baxter, L.K., et al.: Exposure prediction approaches used in air pollution epidemiology studies: key findings and future recommendations. J. Exposure Sci. Environ. Epidemiol. 23(6), 654–659 (2013)

    Article  Google Scholar 

  7. Beelen, R., et al.: Development of NO2 and NOx land use regression models for estimating air pollution exposure in 36 study areas in Europe-the escape project. Atmos. Environ. 72, 10–23 (2013)

    Article  Google Scholar 

  8. Briggs, D.J., et al.: A regression-based method for mapping traffic-related air pollution: application and testing in four contrasting urban environments. Sci. Total Environ. 253(1–3), 151–167 (2000)

    Article  Google Scholar 

  9. Brunekreef, B., Holgate, S.T.: Air pollution and health. Lancet 360(9341), 1233–1242 (2002)

    Article  Google Scholar 

  10. Chen, L., et al.: A land use regression for predicting NO2 and PM10 concentrations in different seasons in Tianjin region, China. J. Environ. Sci. 22(9), 1364–1373 (2010)

    Article  Google Scholar 

  11. Choi, G., Bell, M.L., Lee, J.T.: A study on modeling nitrogen dioxide concentrations using land-use regression and conventionally used exposure assessment methods. Environ. Res. Lett. 12(4), 044003 (2017)

    Article  Google Scholar 

  12. Christakos, G.: A Bayesian/maximum-entropy view to the spatial estimation problem. Math. Geol. 22(7), 763–777 (1990). https://doi.org/10.1007/BF00890661

    Article  MathSciNet  MATH  Google Scholar 

  13. Christakos, G., Serre, M.L.: BME analysis of spatiotemporal particulate matter distributions in North Carolina. Atmos. Environ. 34(20), 3393–3406 (2000)

    Article  Google Scholar 

  14. Clemen, R.T.: Combining forecasts: a review and annotated bibliography. Int. J. Forecast. 5(4), 559–583 (1989)

    Article  Google Scholar 

  15. Cowie, C.T., et al.: Comparison of model estimates from an intra-city land use regression model with a national satellite-LUR and a regional Bayesian Maximum Entropy model, in estimating NO2 for a birth cohort in Sydney, Australia. Environ. Res. 174, 24–34 (2019)

    Article  Google Scholar 

  16. Crouse, D.L., Goldberg, M.S., Ross, N.A.: A prediction-based approach to modelling temporal and spatial variability of traffic-related air pollution in Montreal, Canada. Atmos. Environ. 43(32), 5075–5084 (2009)

    Article  Google Scholar 

  17. DeGroot, M.H.: Reaching a consensus. J. Am. Stat. Assoc. 69(345), 118–121 (1974)

    Article  Google Scholar 

  18. Diamond, P.: Fuzzy kriging. Fuzzy Sets Syst. 33(3), 315–332 (1989)

    Article  MathSciNet  Google Scholar 

  19. Ferber, J., Weiss, G.: Multi-agent Systems: An Introduction to Distributed Artificial Intelligence, vol. 1. Addison-Wesley, Reading (1999)

    Google Scholar 

  20. Golub, B., Jackson, M.O.: Naive learning in social networks and the wisdom of crowds. Am. Econ. J. Microeconomics 2(1), 112–49 (2010)

    Article  Google Scholar 

  21. Gonzales, M., et al.: Evaluation of land use regression models for NO2 in El Paso, Texas, USA. Sci. Total Environ. 432, 135–142 (2012)

    Article  Google Scholar 

  22. Grigoras, G., Cuculeanu, V., Ene, G., Mocioaca, G., Deneanu, A.: Air pollution dispersion modeling in a polluted industrial area of complex terrain from Romania. Romanian Rep. Phys. 64(1), 173–186 (2012)

    Google Scholar 

  23. Guo, D., Guo, R., Thiart, C.: Integrating GIS with fuzzy logic and geostatistics: predicting air pollutant pm10 for California, using fuzzy kriging. Doctoral dissertation, MSc. thesis (2003)

    Google Scholar 

  24. Guo, D., Guo, R., Thiart, C.: Predicting air pollution using fuzzy membership grade kriging. Comput. Environ. Urban Syst. 31(1), 33–51 (2007)

    Article  Google Scholar 

  25. Gurung, A., Levy, J.I., Bell, M.L.: Modeling the intraurban variation in nitrogen dioxide in urban areas in Kathmandu Valley, Nepal. Environ. Res. 155, 42–48 (2017)

    Article  Google Scholar 

  26. Henderson, S.B., Beckerman, B., Jerrett, M., Brauer, M.: Application of land use regression to estimate long-term concentrations of traffic-related nitrogen oxides and fine particulate matter. Environ. Sci. Technol. 41(7), 2422–2428 (2007)

    Article  Google Scholar 

  27. Hurley, P.: The air pollution model (TAPM) version 2. Part 1: technical description. CSIRO Atmos. Res. Tech. Pap. 55, 1–49 (2002)

    Google Scholar 

  28. Jerrett, M., et al.: Modeling the intraurban variability of ambient traffic pollution in Toronto, Canada. J. Toxicol. Environ. Health A 70(3–4), 200–212 (2007)

    Article  Google Scholar 

  29. Jerrett, M., et al.: Spatial analysis of air pollution and mortality in Los Angeles. Epidemiology 16, 727–736 (2005)

    Article  Google Scholar 

  30. Jodłowiec, M., Krótkiewicz, M., Palak, R., Wojtkiewicz, K.: Graph-based crowd definition for assessing wise crowd measures. In: Nguyen, N.T., Chbeir, R., Exposito, E., Aniorté, P., Trawiński, B. (eds.) ICCCI 2019. LNCS (LNAI), vol. 11683, pp. 66–78. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28377-3_6

    Chapter  Google Scholar 

  31. Journel, A.G.: Nonparametric estimation of spatial distributions. J. Int. Assoc. Math. Geol. 15(3), 445–468 (1983)

    Article  MathSciNet  Google Scholar 

  32. Krige, D.G.: A statistical approach to some basic mine valuation problems on the Witwatersrand. J. South Afr. Inst. Min. Metall. 52(6), 119–139 (1951)

    Google Scholar 

  33. Lee, E.S.: Neuro-fuzzy estimation in spatial statistics. J. Math. Anal. Appl. 249(1), 221–231 (2000)

    Article  Google Scholar 

  34. Makri, A., Stilianakis, N.I.: Vulnerability to air pollution health effects. Int. J. Hyg. Environ. Health 211(3–4), 326–336 (2008)

    Article  Google Scholar 

  35. Nielsen, M.: Reinventing Discovery: The New Era of Networked Science, vol. 70. Princeton University Press, Princeton (2011)

    Book  Google Scholar 

  36. Omre, H.: Bayesian kriging–merging observations and qualified guesses in kriging. Math. Geol. 19(1), 25–39 (1987)

    Article  MathSciNet  Google Scholar 

  37. Palak, R., Wojtkiewicz, K.: The formal framework for collective systems. Axioms 10(2), 91 (2021)

    Article  Google Scholar 

  38. Reyes, J.M., Serre, M.L.: An LUR/BME framework to estimate PM2.5 explained by on road mobile and stationary sources. Environ. Sci. Technol. 48(3), 1736–1744 (2014)

    Article  Google Scholar 

  39. Rose, N., Cowie, C., Gillett, R., Marks, G.B.: Validation of a spatiotemporal land use regression model incorporating fixed site monitors. Environ. Sci. Technol. 45(1), 294–299 (2011)

    Article  Google Scholar 

  40. Serre, M.L., Christakos, G.: Modern geostatistics: computational BME analysis in the light of uncertain physical knowledge-the Equus Beds study. Stoch. Env. Res. Risk Assess. 13(1), 1–26 (1999). https://doi.org/10.1007/s004770050029

    Article  MATH  Google Scholar 

  41. Shad, R., Mesgari, M.S., Shad, A., et al.: Predicting air pollution using fuzzy genetic linear membership kriging in GIS. Comput. Environ. Urban Syst. 33(6), 472–481 (2009)

    Article  Google Scholar 

  42. Surowiecki, J.: The wisdom of crowds. Anchor (2005)

    Google Scholar 

  43. Wagner, C.: Consensus through respect: a model of rational group decision-making. Philos. Stud. 34(4), 335–349 (1978)

    Article  MathSciNet  Google Scholar 

  44. Zadeh, L.A.: Fuzzy sets. In: Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected Papers by Lotfi A Zadeh, pp. 394–432. World Scientific (1996)

    Google Scholar 

  45. Zhou, Z.H., Wu, J., Tang, W.: Ensembling neural networks: many could be better than all. Artif. Intell. 137(1–2), 239–263 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

This work has been supported by the Region of Madrid (grant number FORTE-CM, S2018/TCS-4314) and the Spanish MCIU-FEDER (grant number FAME, RTI2018-093608-B-C31).

This work has been carried out on data provided by courtesy of the city of Opole.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krystian Wojtkiewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Palak, R., Wojtkiewicz, K., Merayo, M.G. (2021). An Implementation of Formal Framework for Collective Systems in Air Pollution Prediction System. In: Nguyen, N.T., Iliadis, L., Maglogiannis, I., Trawiński, B. (eds) Computational Collective Intelligence. ICCCI 2021. Lecture Notes in Computer Science(), vol 12876. Springer, Cham. https://doi.org/10.1007/978-3-030-88081-1_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88081-1_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88080-4

  • Online ISBN: 978-3-030-88081-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics