Skip to main content

An Improved Forecasting Model from Satellite Imagery Based on Optimum Wavelet Bases and Adam Optimized LSTM Methods

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2021)

Abstract

This paper proposes a new hybrid approach I-WT-LSTM (i.e., Improved Wavelet Long Short-Term Memory (LSTM) Model) for forecasting non-stationary time series (TS) from satellite imagery. The proposed approach consists of two steps: The first step aims at decomposing TS using Multi-Resolution Analysis wavelet (MRA-WT) into inter-and intra-annual components using 18 different mother wavelets (MW). Then, the energy to Shannon entropy ratio criterion is calculated to select the best MW. The second step is based on the LSTM model using Adam optimizer to predict the future. The proposed approach is tested using TS derived from Moderate Resolution Imaging Spectroradiometer (MODIS) images from 2001 to 2017. The results were compared with the predictions of the LSTM models using different optimizers. Additionally, the importance of selecting the optimal MW is analysed. The obtained results prove that the I-WT-LSTM approach outperforms all other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Phan, D.H., Huynh, L.D.: Evaluation of the cleft-overstep algorithm for linear regression analysis. In: Nguyen, N.T., Hoang, B.H., Huynh, C.P., Hwang, D., Trawiński, B., Vossen, G. (eds.) ICCCI 2020. LNCS (LNAI), vol. 12496, pp. 400–411. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63007-2_31

    Chapter  Google Scholar 

  2. Rhif, M., Ben Abbes, A., Martinez, B., Farah, I.R.: A deep learning approach for forecasting non-stationary big remote sensing time series. Arab. J. Geosci. 13(22), 1–11 (2020). https://doi.org/10.1007/s12517-020-06140-w

    Article  Google Scholar 

  3. Huang, N., Shen, Z., Steven, L., et al.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. In: Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 454(1971), 903–995 (1998). https://doi.org/10.1098/rspa.1998.0193

  4. Chang, Z., Zhang, Y., Chen, W.: Electricity price prediction based on hybrid model of adam optimized LSTM neural network and wavelet transform. Energy 187, 115804 (2019)

    Google Scholar 

  5. Zhang, Q., Li, F., Long, F., Ling, Q.: Vehicle emission forecasting based on wavelet transform and long short-term memory network. IEEE Access 6, 56984–56994 (2018)

    Google Scholar 

  6. Li, Z., Tam, V.: Combining the real-time wavelet denoising and long-short-term-memory neural network for predicting stock indexes. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–8. IEEE (2017)

    Google Scholar 

  7. Rhif, M., Abbes, A.B., Farah, I., Martinez, B., Sang, Y.: Wavelet transform application for/in non-stationary time-series analysis: a review. Appl. Sci. 9(7), 1345 (2019). https://doi.org/10.3390/app9071345

    Article  Google Scholar 

  8. Rouse Jr, J., Haas, R., Schell, J., Deering, D.: Monitoring vegetation systems in the great plains with ERTS. In: Third Earth Resources Technology Satellite–1 Syposium 1, pp. 309–317 (1974)

    Google Scholar 

  9. Xue, J., Su, B.: Significant remote sensing vegetation indices: a review of developments and applications. J. Sens. 2017 (2017)

    Google Scholar 

  10. Abbes, A.B., Farah, M., Farah, I., Barra, V.: A non-stationary NDVI time series modelling using triplet Markov chain. Int. J. Inf. Dec. Sci. 11(2), 163–179 (2019)

    Google Scholar 

  11. Martínez, B., Gilabert, M.: Vegetation dynamics from NDVI time series analysis using the wavelet transform. Remote Sens. Environ. 113(9), 1823–1842 (2009). https://doi.org/10.1016/j.rse.2009.04.016

  12. Abbes, A.B., Bounouh, O., Farah, I., de Jong, R., Martínez, B.: Comparative study of three satellite image time-series decomposition methods for vegetation change detection. Eur. J. Remote Sens. 51(1), 607–615 (2018). https://doi.org/10.1080/22797254.2018.1465360

    Article  Google Scholar 

  13. Rhif, M., Ben Abbes, A., Martínez, B., Farah, I.: Deep learning models performance for NDVI time series prediction: a case study on north west Tunisia. In: 2020 Mediterranean and Middle-East Geoscience and Remote Sensing Symposium (M2GARSS), pp. 9–12. IEEE (2020)

    Google Scholar 

  14. Ghaderpour, E., Ben Abbes, A., Rhif, M., Pagiatakis, S.D., Farah, I.R.: Non-stationary and unequally spaced NDVI time series analyses by the lSWAVE software. Int. J. Remote Sens. 41(6), 2374–2390 (2020)

    Article  Google Scholar 

  15. Rodrigues, A., Daazmello, G., et al.: Selection of mother wavelet for wavelet analysis of vibration signals in machining. J. Mech. Eng. Autom. 6(5A), 81–85 (2016)

    Google Scholar 

  16. Reddy, D., Prasad, P.: Prediction of vegetation dynamics using NDVI time series data and LSTM. Model. Earth Syst. Environ. 4(1), 409–419 (2018)

    Article  Google Scholar 

  17. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  18. Rafiei, M., Niknam, T., Aghaei, J., Shafie-Khah, M., Catalão, J.P.: Probabilistic load forecasting using an improved wavelet neural network trained by generalized extreme learning machine. IEEE Trans. Smart Grid 9(6), 6961–6971 (2018)

    Article  Google Scholar 

  19. Mallat, S.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989). https://doi.org/10.1109/34.192463

    Article  MATH  Google Scholar 

  20. Jawerth, B., Sweldens, W.: An overview of wavelet based multiresolution analyses. SIAM Rev. 36(3), 377–412 (1994)

    Google Scholar 

  21. Percival, D.B., Wang, M., Overland, J.E.: An introduction to wavelet analysis with applications to vegetation time series. Community Ecol. 5(1), 19–30 (2004). https://doi.org/10.1556/ComEc.5.2004.1.3

    Article  Google Scholar 

  22. Su, W., Qu, Y., Deng, C., Wang, Y., Zheng, F., Chen, Z.: Enhance generative adversarial networks by wavelet transform to denoise low-dose CT images. In: 2020 IEEE International Conference on Image Processing (ICIP), pp. 350–354. IEEE (2020)

    Google Scholar 

  23. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manel Rhif .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rhif, M., Abbes, A.B., Martinez, B., Farah, I.R. (2021). An Improved Forecasting Model from Satellite Imagery Based on Optimum Wavelet Bases and Adam Optimized LSTM Methods. In: Nguyen, N.T., Iliadis, L., Maglogiannis, I., Trawiński, B. (eds) Computational Collective Intelligence. ICCCI 2021. Lecture Notes in Computer Science(), vol 12876. Springer, Cham. https://doi.org/10.1007/978-3-030-88081-1_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88081-1_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88080-4

  • Online ISBN: 978-3-030-88081-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics