Skip to main content

Establishing the Informational Requirements for Modelling Open Domain Dialogue and Prototyping a Retrieval Open Domain Dialogue System

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2021)

Abstract

Open domain dialogue systems aim to coherently respond to users over long conversations through multiple conversational turns. Modelling open domain dialogue is challenging as both the syntactic and semantic features of language play a role in response formation. As similarity to human dialogue has been considered the goal of open domain dialogue systems, this paper takes the view that human linguistic reasoning research can be informative to the requirement engineering process of modelling open domain dialogue. Through a review of linguistic reasoning research and modern approaches in open domain dialogue systems, the authors present informational hypotheses impacting the modelling of open domain dialogue systems. Furthermore, this paper discusses the design and testing of an open domain dialogue system presenting response BLEU-1 scores of 35.41% based on the DailyDialogue Dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adiwardana, D., et al.: Towards a human-like open-domain chatbot. arXiv:2001.09977 (2020)

  2. van den Broek, P., Helder, A.: Cognitive processes in discourse comprehension: passive processes, reader-initiated processes, and evolving mental representations. Discourse Process. 54(5–6), 360–372 (2017). https://doi.org/10.1080/0163853X.2017.1306677

    Article  Google Scholar 

  3. Campillos-Llanos, L., et al.: Designing a virtual patient dialogue system based on terminology-rich resources: challenges and evaluation. Nat. Lang. Eng. 26(2), 183–220 (2020). https://doi.org/10.1017/S1351324919000329

    Article  Google Scholar 

  4. Cer, D., et al.: Universal sentence encoder. arXiv:1803.11175 (2018)

  5. Christie, S., et al.: Development of analogical reasoning: a novel perspective from cross-cultural studies. Child Dev. Perspect. 14(3), 164–170 (2020). https://doi.org/10.1111/cdep.12380

    Article  Google Scholar 

  6. Cui, C., et al.: User attention-guided multimodal dialog systems. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 445–454. Association for Computing Machinery, New York, NY, USA (2019). https://doi.org/10.1145/3331184.3331226.

  7. Devlin, J., et al.: BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv:1810.04805 (2019)

  8. Dinan, E., et al.: The second conversational intelligence challenge (ConvAI2). arXiv:1902.00098 (2019)

  9. Evans, N., Levinson, S.C.: With diversity in mind: freeing the language sciences from universal grammar. Behav. Brain Sci. 32(5), 472–492 (2009). https://doi.org/10.1017/S0140525X09990525

    Article  Google Scholar 

  10. Hammer, R., et al.: Individual differences in analogical reasoning revealed by multivariate task-based functional brain imaging. Neuroimage 184, 993–1004 (2019). https://doi.org/10.1016/j.neuroimage.2018.09.011

    Article  Google Scholar 

  11. Horvath, S., et al.: Acquisition of verb meaning from syntactic distribution in preschoolers with autism spectrum disorder. Language Speech Hearing Serv. Schools 49(3S), 668–680 (2018). https://doi.org/10.1044/2018_LSHSS-STLT1-17-0126

    Article  Google Scholar 

  12. Huang, M., et al.: Challenges in building intelligent open-domain dialog systems. ACM Trans. Inform. Syst. 38(3), 1–32 (2020). https://doi.org/10.1145/3383123

    Article  Google Scholar 

  13. Ke, P., et al.: Generating informative responses with controlled sentence function. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (vol. 1: Long Papers), pp. 1499–1508. Association for Computational Linguistics, Melbourne, Australia (2018). https://doi.org/10.18653/v1/P18-1139.

  14. Kim, H.J., et al.: seq2vec: analyzing sequential data using multi-rank embedding vectors. Electron. Commer. Res. Appl. 43, 101003 (2020). https://doi.org/10.1016/j.elerap.2020.101003

    Article  Google Scholar 

  15. Lan, T., et al.: Self-attention comparison module for boosting performance on retrieval-based open-domain dialog systems. arXiv:2012.11357 (2020)

  16. Li, Y., et al.: DailyDialog: a manually labelled multi-turn dialogue dataset. arXiv:1710.03957 (2017)

  17. Luo, L., et al.: An auto-encoder matching model for learning utterance-level semantic dependency in dialogue generation. arXiv:1808.08795 (2018)

  18. Mehndiratta, A., Asawa, K.: Non-goal oriented dialogue agents: state of the art, dataset, and evaluation. Artif. Intell. Rev. 54(1), 329–357 (2020). https://doi.org/10.1007/s10462-020-09848-z

    Article  Google Scholar 

  19. Nahatame, S.: Revisiting second language readers’ memory for narrative texts: the role of causal and semantic text relations. Read. Psychol. 41(8), 753–777 (2020). https://doi.org/10.1080/02702711.2020.1768986

    Article  Google Scholar 

  20. Progovac, L., et al.: Diversity of grammars and their diverging evolutionary and processing paths: evidence from functional MRI study of Serbian. Frontiers Psychol. 9 (2018). https://doi.org/10.3389/fpsyg.2018.00278.

  21. Reimers, N., Gurevych, I.: Sentence-BERT: sentence embeddings using Siamese BERT-networks. arXiv:1908.10084 (2019)

  22. Roller, S., et al.: Recipes for building an open-domain chatbot. arXiv:2004.13637 (2020)

  23. Simms, N.K., et al.: Working memory predicts children’s analogical reasoning. J. Exp. Child Psychol. 166, 160–177 (2018). https://doi.org/10.1016/j.jecp.2017.08.005

    Article  Google Scholar 

  24. Westphal, A.J., et al.: Shared and distinct contributions of rostrolateral prefrontal cortex to analogical reasoning and episodic memory retrieval. Hum. Brain Mapp. 37(3), 896–912 (2016). https://doi.org/10.1002/hbm.23074

    Article  Google Scholar 

  25. Yang, H., et al.: Open-domain dialogue generation: presence, limitation and future directions. In: Proceedings of the 2019 7th International Conference on Information Technology: IoT and Smart City, pp. 5–12. Association for Computing Machinery, New York, NY, USA (2019). https://doi.org/10.1145/3377170.3377248.

  26. Zhou, M., et al.: Progress in Neural NLP: modeling, learning, and reasoning. Engineering 6(3), 275–290 (2020). https://doi.org/10.1016/j.eng.2019.12.014

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elias Pimenidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Meier, T., Pimenidis, E. (2021). Establishing the Informational Requirements for Modelling Open Domain Dialogue and Prototyping a Retrieval Open Domain Dialogue System. In: Nguyen, N.T., Iliadis, L., Maglogiannis, I., Trawiński, B. (eds) Computational Collective Intelligence. ICCCI 2021. Lecture Notes in Computer Science(), vol 12876. Springer, Cham. https://doi.org/10.1007/978-3-030-88081-1_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88081-1_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88080-4

  • Online ISBN: 978-3-030-88081-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics