Skip to main content

Morphological Analysis of Histopathological Images Using Deep Learning

  • Conference paper
  • First Online:
Advances in Computational Collective Intelligence (ICCCI 2021)

Abstract

In this study, we introduce a morphological analysis of segmented tumour cells from histopathology images concerning the recognition of cell overlapping. The main research problem considered is to distinguish how many cells are located in a structure, which is composed of overlapping cells. In our experiments, we used convolutional neural network models to provide recognition of the number of cells. For the medical data used: Ki-67 histopathology images, we achieved a high f1-score result. Therefore, our research proves the assumption to use convolutional neural networks for morphological analysis of segmented objects derived from medical images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buiu, C., Dănăilă, V.-R., Răduţă, C.N.: MobileNetV2 ensemble for cervical precancerous lesions classification. Processes 8(5), 595 (2020)

    Article  Google Scholar 

  2. Chetoui, M., Akhloufi, A.M.: Explainable diabetic retinopathy using EfficientNET. In: 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE (2020)

    Google Scholar 

  3. Ebrahimi, A., Suhuai, L., Raymond, C.: Introducing transfer leaming to 3D ResNet-18 for Alzheimer’s disease detection on MRI Images. In: 35th International Conference on Image and Vision Computing New Zealand (IVCNZ). IEEE (2020)

    Google Scholar 

  4. Fouad, S., Landini, G., Randell, D., Galton, A.: Morphological separation of clustered nuclei in histological images. In: Campilho, A., Karray, F. (eds.) ICIAR 2016. LNCS, vol. 9730, pp. 599–607. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41501-7_67

    Chapter  Google Scholar 

  5. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. 4th Edn. MedData Interactive, Pearson (2018)

    Google Scholar 

  6. Guo, M., Yongzhao, D.: Classification of thyroid ultrasound standard plane images using ResNet-18 networks. In: IEEE 13th International Conference on Anti-counterfeiting, Security, and Identification (ASID). IEEE (2019)

    Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

  8. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269 (2017)

    Google Scholar 

  9. Huang, Z., Zhu, X., Ding, M., Zhang, X.: Medical image classification using a light-weighted hybrid neural network based on PCANet and DenseNet. IEEE Access 8, 24697–24712 (2020)

    Article  Google Scholar 

  10. Kassani, S.H., Kassani, P.H., Wesolowski, M.J., Schneider, K.A., Deters, R.: Classification of histopathological biopsy images using ensemble of deep learning networks. arXiv preprint arXiv:1909.11870 (2019)

  11. Kumar, A., Kim, J., Lyndon, D., Fulham, M., Feng, D.: An ensemble of fine-tuned convolutional neural networks for medical image classification. IEEE J. Biomed. Health Inform. 21(1), 31–40 (2016)

    Article  Google Scholar 

  12. Lakshmi, S., Vijayasenan, D., Sumam, D.S., Sreeram, S., Suresh, P.K.: An integrated deep learning approach towards automatic evaluation of Ki-67 labeling index. In: Proceedings of the TENCON, IEEE Region 10 Conference (TENCON), Kochi, India, 17–20 October, pp. 2310–2314 (2019)

    Google Scholar 

  13. Lim, K.-T., Park, S.-H., Kim, J., Seonwoo, H., Choung, P.-H., Chung, J.H.: Cell image processing method for automatic cell pattern recognition and morphological analysis of mesenchymal stem cells-an algorithm for cell classification and adaptive brightness correction. J. Biosyst. Eng. 38, 55–63 (2013)

    Article  Google Scholar 

  14. Lotufo, R.A., Rittner, L., Audigier, R., Machado, R.C., Saúde, A.V.: In: Deserno, T. (eds.) Biomedical Image Processing. Biological and Medical Physics, Biomedical Engineering. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15816-2

  15. Marques, G., Deevyankar, A., de la Torre Díez, I.: Automated medical diagnosis of COVID-19 through EfficientNet convolutional neural network. Appl. Soft Comput. 96, 106691 (2020)

    Article  Google Scholar 

  16. Negahbani, F., Sabzi, R., Pakniyat Jahromi, B., et al.: PathoNet introduced as a deep neural network backend for evaluation of Ki-67 and tumor-infiltrating lymphocytes in breast cancer. Sci. Rep. 11, 8489 (2021)

    Article  Google Scholar 

  17. Ragab, H.M., Samy, N., Afify, M., Maksoud, Nl. Abd El., Shaaban, H.A.M.: Assessment of Ki-67 as a potential biomarker in patients with breast cancer. J. Genet. Eng. Biotechnol. 16, 479–484 (2018)

    Google Scholar 

  18. Rubin, J., Parvaneh, S., Rahman, A., Conroy, B., Babaeizadeh, S.: Densely connected convolutional networks for detection of atrial fibrillation from short single-lead ECG recordings. J Electrocardiol. 51(6S), S18–S21 (2018)

    Article  Google Scholar 

  19. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.-Ch.: MobileNetV2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4510–4520 (2018)

    Google Scholar 

  20. Saha, M., Chakraborty, C., Arun, I., et al.: An advanced deep learning approach for Ki-67 stained hotspot detection and proliferation rate scoring for prognostic evaluation of breast cancer. Sci. Rep. 7, 3213 (2017)

    Article  Google Scholar 

  21. Shvets, A., Rakhlin, A., Kalinin, A.A., Iglovikov, V.: Automatic instrument segmentation in robot-assisted surgery using deep learning. In: 17th IEEE International Conference on Machine Learning and Applications (ICMLA). IEEE (2018)

    Google Scholar 

  22. Siegel, R.L., Miller, K.D., Fuchs, H.E., Jemal, A.: Cancer statistics, 2021. CA Cancer J. Clin. 71, 7–33 (2021)

    Article  Google Scholar 

  23. Simonyan, K., Zisserman A.: Very deep convolutional networks for large-scale image recognition. In: 3rd International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  24. Swiderska-Chadaj, Z., Gallego, J., Gonzalez-Lopez, L., Bueno, G.: Detection of Ki67 hot-spots of invasive breast cancer based on convolutional neural networks applied to mutual information of H&E and Ki67 whole slide images. Appl. Sci. 10, 7761 (2020)

    Article  Google Scholar 

  25. Szegedy, C., Liu, W., Jia, Y., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015)

    Google Scholar 

  26. Tan, M., Quoc, L.: Efficientnet: Rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning. PMLR (2019)

    Google Scholar 

  27. Valkonen, M., Isola, J., Ylinen, O., Muhonen, V., Saxlin, A., Tolonen, T., Nykter, M., Ruusuvuori, P.: Cytokeratin-supervised deep learning for automatic recognition of epithelial cells in breast cancers stained for ER, PR, and Ki-67. IEEE Trans. Med. Imaging. 39(2), 534–542 (2020)

    Article  Google Scholar 

  28. Xie, S., Zheng, X., Chen, Y., et al.: Artifact removal using improved GoogLeNet for sparse-view CT reconstruction. Sci Rep. 8(1), 6700 (2018)

    Article  Google Scholar 

  29. Yang, Q., Yan, P., Kalra, M.K., Wang, G.: CT image denoising with perceptive deep neural networks. ArXiv170207019 Cs [Internet] (2017)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the statutory funds of the Department of Computational Intelligence, Faculty of Computer Science and Management, Wroclaw University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Tabakov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zawisza, A., Tabakov, M., Karanowski, K., Galus, K. (2021). Morphological Analysis of Histopathological Images Using Deep Learning. In: Wojtkiewicz, K., Treur, J., Pimenidis, E., Maleszka, M. (eds) Advances in Computational Collective Intelligence. ICCCI 2021. Communications in Computer and Information Science, vol 1463. Springer, Cham. https://doi.org/10.1007/978-3-030-88113-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88113-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88112-2

  • Online ISBN: 978-3-030-88113-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics