Skip to main content

Ontology-Based Approaches for Communication with Autonomous Guided Vehicles for Industry 4.0

  • Conference paper
  • First Online:
Advances in Computational Collective Intelligence (ICCCI 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1463))

Included in the following conference series:

Abstract

Autonomous Guided Vehicles (AGV) are an enabling technology that has changed the landscape for the new generation of manufacturing systems. Because AGV must interact with a heterogenous production environment, communication between an AGV and other devices must be established dynamically. This includes the production stands, production systems, manufacturing infrastructure, and cooperation with other AGVs. The focus of this paper is the ontological approach that enables dynamic communications with an AGV that must be adapted to changing operating conditions. The aim of this work is to review the existing approaches using ontologies for industrial communication, to evoke a discussion, and to elucidate the current research opportunities by highlighting the relationship between different subareas of communication with an AGV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.drupal.org/project/neologism.

  2. 2.

    http://neon-toolkit.org/.

  3. 3.

    http://oboedit.org.

  4. 4.

    http://apollo.open.ac.uk.

  5. 5.

    https://duraspace.org/vivo/.

  6. 6.

    http://owlgred.lumii.lv/.

  7. 7.

    https://www.cambridgesemantics.com/anzo-platform/.

  8. 8.

    http://vocbench.uniroma2.it.

  9. 9.

    https://www.osgi.org/.

  10. 10.

    http://semanticturkey.uniroma2.it/.

  11. 11.

    https://protege.stanford.edu/.

  12. 12.

    Https://Www.Cognitum.Eu/Semantics/Fluenteditor/.

References

  1. Cupek, R., Ziebinski, A., Fojcik, M.: An ontology model for communicating with an autonomous mobile platform. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS 2017. CCIS, vol. 716, pp. 480–493. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58274-0_38

    Chapter  Google Scholar 

  2. Arai, T., Aiyama, Y., Maeda, Y., Sugi, M., Ota, J.: Agile assembly system by “plug and produce.” CIRP Ann. 49(1), 1–4 (2000)

    Article  Google Scholar 

  3. Pinto, H.S., Martins, J.P.: Ontologies: how can they be built? Knowl. Inf. Syst. 6(4), 441–464 (2004)

    Article  Google Scholar 

  4. Cupek, R., Drewniak, M., Ziebinski, A.: Information models for a new generation of manufacturing systems-a case study of automated guided vehicle. In: 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), pp. 858–864. IEEE (2019)

    Google Scholar 

  5. IEEE Standard Ontologies for Robotics and Automation. IEEE Std. 1872–2015 (2015)

    Google Scholar 

  6. Tenorth, M., Perzylo, A., Lafrenz, R., Beetz, M.: The roboearth language: representing and exchanging knowledge about actions, objects, and environments. In: International Conference on Robotics and Automation (ICRA) (2012)

    Google Scholar 

  7. Schlenoff, C., Messina, E.: A robot ontology for urban search and rescue. In: Proceedings of the CIKM 2005 Workshop on Research in Knowledge Representation for Autonomous Systems (2005)

    Google Scholar 

  8. Schlenoff, C., Washington, R., Barbera, T., Manteuffel, C., Dungrani, S.: A standard intelligent systems ontology. In: Proceedings of the SPIE Defense and Security Symposium, Unmanned Ground Vehicle Technology VII Conference. Orlando, FL (2005)

    Google Scholar 

  9. Cupek, R., Ziebinski, A., Huczala, L., Erdogan, H.: Agent-based manufacturing execution systems for short-series production scheduling. Comput. Ind. 82, 245–258 (2016)

    Article  Google Scholar 

  10. van Heist, G., Schreiber, A.T., Wielinga, B.J.: Using explicit ontologies in KBS development. Int. J. Hum. Comput. Stud. 46(2/3), 183–292 (1997)

    MATH  Google Scholar 

  11. Scholten, B.: The road to integration: a guide to applying the ISA-95 standard in manufacturing. Isa (2007)

    Google Scholar 

  12. Harjunkoski, I., Bauer, R.: Sharing data for production scheduling using the ISA-95 standard. Front. Energy Res. 2, 44 (2014)

    Article  Google Scholar 

  13. Kannengiesser, U., Neubauer, M., Heininger, R.: Integrating business processes and manufacturing operations based on S-BPM and B2MML. In: Proceedings of the 8th International Conference on Subject-oriented Business Process Management, pp. 1–10 (2016)

    Google Scholar 

  14. Williams, T.J., et al.: Architectures for integrating manufacturing activities and enterprises. Comput. Ind. 24(2–3), 111–139 (1994). https://doi.org/10.1016/0166-3615(94)90016-7

    Article  Google Scholar 

  15. Prades, L., Romero, F., Estruch, A., García-Domínguez, A., Serrano, J.: Defining a methodology to design and implement business process models in BPMN according to the standard ANSI/ISA-95 in a manufacturing enterprise. Proc. Eng. 63, 115–122 (2013)

    Article  Google Scholar 

  16. Technologies, K., et al.: Smart factory of industry 4.0. Appl. Case Chall. IEEE Access 6, 6505–6519 (2017). https://doi.org/10.1109/ACCESS.2017.2783682

    Article  Google Scholar 

  17. Cupek, R., Drewniak, M., Ziebinski, A., Fojcik, M.: “Digital Twins” for highly customized electronic devices-case study on a rework operation. IEEE Access 7, 164127–164143 (2019)

    Article  Google Scholar 

  18. Seyedamir, A., Ferrer, B.R., Martinez Lastra, J.L.: An ISA-95 based Ontology for manufacturing systems knowledge description extended with semantic rules. In: 2018 IEEE 16th International Conference on Industrial Informatics (INDIN), pp. 374–380. IEEE, Porto (2018). https://doi.org/10.1109/INDIN.2018.8471929

  19. An, Y., Qin, F., Chen, B., Simon, R., Wu, H.: OntoPLC: semantic model of PLC programs for code exchange and software reuse. IEEE Trans. Ind. Inf. 17, 1702–1711 (2021). https://doi.org/10.1109/TII.2020.2997360

    Article  Google Scholar 

  20. Compton, M., et al.: The SSN ontology of the W3C semantic sensor network incubator group. J. Web Semant. 17, 25–32 (2012). https://doi.org/10.1016/j.websem.2012.05.003

    Article  Google Scholar 

  21. Alaya, M.B., Medjiah, S., Monteil, T., Drira, K.: Toward semantic interoperability in oneM2M architecture. IEEE Commun. Mag. 53, 35–41 (2015). https://doi.org/10.1109/MCOM.2015.7355582

    Article  Google Scholar 

  22. Schachinger, D., Kastner, W.: Semantic interface for machine-to-machine communication in building automation. In: 2017 IEEE 13th International Workshop on Factory Communication Systems (WFCS), pp. 1–9. IEEE, Trondheim, Norway (2017). https://doi.org/10.1109/WFCS.2017.7991956

  23. Kapoor, B.: A comparative study of ontology building tools in semantic web applications (2020). https://doi.org/10.5281/ZENODO.3697900

  24. Clunis, J.: Comparative survey of ontology editors for the semantic web. In: iConference 2019 Proceedings iSchools (2019). https://doi.org/10.21900/iconf.2019.103300

  25. Dolzhenkov, V.N.: Software tools for ontology development. IJATCSE. 9, 935–941 (2020). https://doi.org/10.30534/ijatcse/2020/05922020

  26. Alatrish, E.S.: Comparison some of ontology editors. (2014)

    Google Scholar 

  27. Musen, M.A.: Protégé team: the protégé project: a look back and a look forward. AI Matt. 1, 4–12 (2015). https://doi.org/10.1145/2757001.2757003

    Article  Google Scholar 

  28. Stellato, A., et al.: VocBench 3: a collaborative semantic web editor for ontologies, thesauri and lexicons. Semant. Web 11, 855–881 (2020). https://doi.org/10.3233/SW-200370

    Article  Google Scholar 

Download references

Acknowledgements

The research that led to these results received funding from the Norway Grants 2014–2021 operated by the National Centre for Research and Development under the project “Automated Guided Vehicles integrated with Collaborative Robots for Smart Industry Perspective” (Project Contract no.: NOR/POLNOR/CoBotAGV/0027/2019 -00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafal Cupek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cupek, R., Fojcik, M., Gaj, P., Stój, J. (2021). Ontology-Based Approaches for Communication with Autonomous Guided Vehicles for Industry 4.0. In: Wojtkiewicz, K., Treur, J., Pimenidis, E., Maleszka, M. (eds) Advances in Computational Collective Intelligence. ICCCI 2021. Communications in Computer and Information Science, vol 1463. Springer, Cham. https://doi.org/10.1007/978-3-030-88113-9_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88113-9_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88112-2

  • Online ISBN: 978-3-030-88113-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics