Skip to main content

Morphological Characteristics Analysis of Working Memory Tracts Using BOLD-fMRI and HARDI Based Tractography in Healthy Human Brains

  • Conference paper
  • First Online:
Bioengineering and Biomedical Signal and Image Processing (BIOMESIP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12940))

  • 682 Accesses

Abstract

The neuroimaging field has newly become a drift with multimodal neuroimaging findings to study brain connectivity through the combination of High Angular Resolution Diffusion Imaging (HARDI) based tractography, and functional activation maps using functional Magnetic Resonance Imaging (fMRI) task-related. The reconstruction of Working Memory (WM) fibers bundle is an important goal for many clinical applications such as brain tumors, gliomas, traumatic brain injury, schizophrenia, and Alzheimer Disease.

In the present paper, we propose to study the anatomical variability of the WM bundle by focusing on the quantification of the track and testing for correlations with sex and local reconstruction methods.

The dataset used for the experiment is based on in vivo data from the Human Connectome Project (HCP). We used fifty normal volunteers (25 males, 25 females; mean age = 25 ± 2.81 years). We computed the shape similarity, the volume, the mean length, and the number of streamlines, to evaluate the variability of macro structural measures between subjects.

Firstly, this study demonstrates that there is a significant difference between the reconstruction of WM fiber bundle using the Diffusion Tensor Imaging (DTI) model and the High Angular Resolution Diffusion Imaging (HARDI) model, with a mean correlation coefficient r of 0.43 and a p-value of 0.09 for all measured parameters. Also, the WM bundle has a complex architecture with crossing fibers. Therefore, we can conclude that the HARDI model is the most relevant model for the reconstruction of the WM fiber bundle. Secondly, there were a slight sex differences in WM fiber bundles morphology between healthy subjects, with a 0.95 shape similarity average. Finally, we find a slight difference between the measured macrostructural parameters inter-subjects (Normalized Volume, Mean Length of streamlines (MLS), and Number of streamlines). We conclude that the statistical measures show that the MLS is the well-correlated parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baddeley, A.: Working Memory Components of Working Memory Individual Differences in Working Memory The Slave Systems of Working Memory, vol. 255

    Google Scholar 

  2. Chai, W.J., Abd Hamid, A.I., Abdullah, J.M.: Working memory from the psychological and neurosciences perspectives: a review. Front. Psychol. 9, 1–16 (2018)

    Article  Google Scholar 

  3. Baddeley, A.: Working memory. Curr. Biol. 20(4), 136–140 (2010)

    Article  Google Scholar 

  4. Charlton, R.A., Barrick, T.R., Lawes, I.N.C., Markus, H.S., Morris, R.G.: White matter pathways associated with working memory in normal aging. Cortex 46(4), 474–489 (2010)

    Article  Google Scholar 

  5. Lapointe, S., Perry, A., Butowski, N.A.: Primary brain tumours in adults. Lancet 392(10145), 432–446 (2018)

    Article  Google Scholar 

  6. Acharya, S., et al.: Neuro-oncology survivors of childhood or adolescent low-grade glioma: a 10-year neurocognitive longitudinal study 21, 1175–1183 (2019)

    Google Scholar 

  7. Guberman, G.I., Houde, J., Ptito, A., Gagnon, I.: Structural abnormalities in thalamo-prefrontal tracks revealed by high angular resolution diffusion imaging predict working memory scores in concussed children (2019)

    Google Scholar 

  8. Sugranyes, G., et al.: Multimodal analyses identify linked functional and white matter abnormalities within the working memory network in schizophrenia. Schizophr. Res. 138(2–3), 136–142 (2012)

    Article  Google Scholar 

  9. Huntley, J.D., Howard, R.J.: Working memory in early Alzheimer’s disease: a neuropsychological review. Int. J. Geriatr. Psychiatry 25(2), 121–132 (2010)

    Article  Google Scholar 

  10. Cahn, A.J., Little, G., Beaulieu, C., Tétreault, P.: Diffusion properties of the fornix assessed by deterministic tractography shows age , sex, volume , cognitive , hemispheric , and twin relationships in young adults from the Human Connectome Project. Brain Struct. Funct. (2021)

    Google Scholar 

  11. Yeatman, J.D., Dougherty, R.F., Myall, N.J., Wandell, B.A., Feldman, H.M.: Tract profiles of white matter properties: automating fiber-tract quantification. PLoS One 7(11) (2012)

    Google Scholar 

  12. Boukadi, M., et al.: Test-retest reliability of diffusion measures extracted along white matter language fiber bundles using Hardi-based tractography. Front. Neurosci. 13 (2019)

    Google Scholar 

  13. Sinke, M.R.T., et al.: Diffusion MRI-based cortical connectome reconstruction: dependency on tractography procedures and neuroanatomical characteristics. Brain Struct. Funct. 223(5), 2269–2285 (2018). https://doi.org/10.1007/s00429-018-1628-y

    Article  Google Scholar 

  14. Fan, J., Milosevic, R., Li, J., Bai, J., Zhang, Y.: The impact of neuroimaging advancement on neurocognitive evaluation in pediatric brain tumor survivors: a review. Brain Sci. Adv. 5(2), 117–127 (2019)

    Article  Google Scholar 

  15. Azad, T.D., Duffau, H.: Limitations of functional neuroimaging for patient selection and surgical planning in glioma surgery. Neurosurg. Focus 48(2), E12 (2020)

    Article  Google Scholar 

  16. Vassal, F., Schneider, F., Boutet, C., Jean, B., Sontheimer, A., Lemaire, J.J.: Combined DTI tractography and functional MRI study of the language connectome in healthy volunteers: extensive mapping of white matter fascicles and cortical activations. PLoS One 11(3), 1–19 (2016)

    Article  Google Scholar 

  17. Yang, Z., He, P., Zhou, J., Ding, Z., Wu, X.: Functional informed fiber tracking using combination of diffusion and functional MRI. IEEE Trans. Biomed. Eng. 66(3), 794–801 (2019)

    Article  Google Scholar 

  18. Takemura, H., Caiafa, C.F., Wandell, B.A., Pestilli, F.: Ensemble tractography. PLoS Comput. Biol. 12(2), 1–22 (2016)

    Article  Google Scholar 

  19. Descoteaux, M.: High Angular Resolution Diffusion MRI: From Local Estimation to Segmentation and Tractography (2008)

    Google Scholar 

  20. Webster, J.G., Descoteaux, M.: high angular resolution diffusion imaging (HARDI). Wiley Encycl. Electr. Electron. Eng., pp. 1–25 (2015)

    Google Scholar 

  21. Brown, G.G., Perthen, J.E., Liu, T.T., Buxton, R.B.: A primer on functional magnetic resonance imaging. Neuropsychol. Rev. 17(2), 107–125 (2007)

    Article  Google Scholar 

  22. Li, M., Newton, A.T., Anderson, A.W., Ding, Z., Gore, J.C.: Characterization of the hemodynamic response function in white matter tracts for event-related fMRI. Nat. Commun. 10(1), 1–11 (2019)

    Article  Google Scholar 

  23. El Kininy, W., Tcd, S., Roddy, D., Hanlon, E.O., Barry, D.: Magnetic resonance diffusion weighted imaging using constrained spherical deconvolution-based tractography of the extracranial course of the facial nerve. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 130(2), e44–e56 (2020)

    Article  Google Scholar 

  24. Raffelt, D., et al.: Apparent fibre density: a novel measure for the analysis of diffusion-weighted magnetic resonance images. Neuroimage 59(4), 3976–3994 (2012)

    Article  Google Scholar 

  25. Chandio, B.Q., et al.: Bundle analytics, a computational framework for investigating the shapes and profiles of brain pathways across populations. Sci. Rep. 10(1), 1–18 (2020)

    Article  Google Scholar 

  26. Chung, S., et al.: Working memory and brain tissue microstructure : white matter tract integrity based on multi-shell diffusion MRI. Sci. Rep. 1–7 (2018)

    Google Scholar 

  27. Glasser, M.F., et al.: The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage 80, 105–124 (2013)

    Article  Google Scholar 

  28. Tournier, J.D., Calamante, F., Gadian, D.G., Connelly, A.: Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. Neuroimage 23(3), 1176–1185 (2004)

    Article  Google Scholar 

  29. Tournier, J.D., Calamante, F., Connelly, A.: MRtrix: diffusion tractography in crossing fiber regions. Int. J. Imaging Syst. Technol. 22(1), 53–66 (2012)

    Article  Google Scholar 

  30. Smith, R.E., Tournier, J., Calamante, F., Connelly, A.: NeuroImage anatomically-constrained tractography: improved diffusion MRI streamlines tractography through effective use of anatomical information. Neuroimage 62(3), 1924–1938 (2012)

    Article  Google Scholar 

  31. Barch, D.M., et al.: Function in the human connectome: task-fMRI and individual differences in behavior. Neuroimage 80, 169–189 (2013)

    Article  Google Scholar 

  32. Garyfallidis, E., Brett, M., Amirbekian, B., Rokem, A., Van Der Walt, S.: Dipy, a library for the analysis of diffusion MRI data. 8, 1–17 (2014)

    Google Scholar 

  33. Hardi, D.I.: Moving beyond DTI. Introd. to Diffus. Tensor Imaging, pp. 65–78 (2014)

    Google Scholar 

  34. Descoteaux, M., Deriche, R., Knösche, T.R., Anwander, A.: Deterministic and probabilistic tractography based on complex fibre orientation distributions. IEEE Trans. Med. Imaging 28(2), 269–286 (2009)

    Article  Google Scholar 

  35. Guberman, G.I., Houde, J.-C., Ptito, A., Gagnon, I., Descoteaux, M.: Structural abnormalities in thalamo-prefrontal tracks revealed by high angular resolution diffusion imaging predict working memory scores in concussed children. Brain Struct. Funct. 225(1), 441–459 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abir Troudi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Troudi, A., Alaya, I.B., Labidi, S. (2021). Morphological Characteristics Analysis of Working Memory Tracts Using BOLD-fMRI and HARDI Based Tractography in Healthy Human Brains. In: Rojas, I., Castillo-Secilla, D., Herrera, L.J., Pomares, H. (eds) Bioengineering and Biomedical Signal and Image Processing. BIOMESIP 2021. Lecture Notes in Computer Science(), vol 12940. Springer, Cham. https://doi.org/10.1007/978-3-030-88163-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88163-4_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88162-7

  • Online ISBN: 978-3-030-88163-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics