Abstract
Researchers often face the need to collect, explore, correlate, analyze, and classify different data sources to discover unknown relationships while performing basic steps of pattern recognition and regression analysis with classification. PEAK is a Python tool designed to make easier all of these the basic steps of pattern recognition, allowing less experienced users to reduce the time required for analysing data and promoting the discovery of unknown relationships between different data. As a working example, we applied PEAK to a specific case study dealing with a well-defined dataset representing a cohort of COVID-19 10000 digital twins with different immunological characteristics.
PEAK is a freely available open-source software. It runs on all platforms that support Python3. The user manual and source code are accessible following this link: https://github.com/Pex2892/PEAK.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Li, Z., Yang, S., Wu, J.: The prediction of the spread of COVID-19 using regression models. In: 2020 International Conference on Public Health and Data Science (ICPHDS), pp. 247–252 (2020). https://doi.org/10.1109/ICPHDS51617.2020.00055
Syeda, H.B., et al.: Role of machine learning techniques to tackle the COVID-19 crisis: systematic review. JMIR Med. Inform. 9 (2021). https://doi.org/10.2196/23811
Lindstrom, G.: Programming with Python. IT Prof. 7, 10–16 (2005). https://doi.org/10.1109/MITP.2005.120
Russo, G., et al.: In silico trial to test COVID-19 candidate vaccines: a case study with UISS platform. BMC Bioinform. 21, 527 (2020). https://doi.org/10.1186/s12859-020-03872-0
Russo, G., et al.: Moving forward through the in silico modeling of tuberculosis: a further step with UISS-TB. BMC Bioinform. 21, 458 (2020). https://doi.org/10.1186/s12859-020-03762-5
Pennisi, M., Russo, G., Sgroi, G., Palumbo, G.A.P., Pappalardo, F.: In silico evaluation of daclizumab and vitamin D effects in multiple sclerosis using agent based models. In: Cazzaniga, P., Besozzi, D., Merelli, I., Manzoni, L. (eds.) CIBB 2019. LNCS, vol. 12313, pp. 285–298. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63061-4_25
Pappalardo, F., et al.: A computational model to predict the immune system activation by citrus-derived vaccine adjuvants. Bioinformatics 32, 2672–2680 (2016). https://doi.org/10.1093/bioinformatics/btw293
Pappalardo, F., Flower, D., Russo, G., Pennisi, M., Motta, S.: Computational modelling approaches to vaccinology. Pharmacol. Res. 92, 40–45 (2015). https://doi.org/10.1016/j.phrs.2014.08.006
Pappalardo, F., Motta, S., Lollini, P.-L., Mastriani, E.: Analysis of vaccine’s schedules using models. Cell. Immunol. 244, 137–140 (2006). https://doi.org/10.1016/j.cellimm.2007.03.002
Viceconti, M., Juarez, M.A., Curreli, C., Pennisi, M., Russo, G., Pappalardo, F.: Credibility of in silico trial technologies—a theoretical framing. IEEE J. Biomed. Heal. Inform. 24, 4–13 (2020). https://doi.org/10.1109/JBHI.2019.2949888
Pennisi, M., et al.: Predicting the artificial immunity induced by RUTI® vaccine against tuberculosis using universal immune system simulator (UISS). BMC Bioinform. 20, 504 (2019). https://doi.org/10.1186/s12859-019-3045-5
Pennisi, M., Russo, G., Ravalli, S., Pappalardo, F.: Combining agent based-models and virtual screening techniques to predict the best citrus-derived vaccine adjuvants against human papilloma virus. BMC Bioinform. 18, 544 (2017). https://doi.org/10.1186/s12859-017-1961-9
Pearson’s correlation coefficient. In: Kirch, W. (ed.) Encyclopedia of Public Health, pp. 1090–1091. Springer Netherlands, Dordrecht (2008). https://doi.org/10.1007/978-1-4020-5614-7_2569
Spearman Rank Correlation Coefficient. In: The Concise Encyclopedia of Statistics, pp. 502–505. Springer New York, New York, NY (2008). https://doi.org/10.1007/978-0-387-32833-1_379
Kendall, A.M.G.: Biometrika Trust: A New Measure of Rank Correlation, vol. 30, pp. 81–93. Oxford University Press on behalf of Biometrika Trust Stable. https://www.jstor.org/stable/2332226 (1938).
Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence, vol. 2, pp. 1137–1143. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1995)
Muhamedyev, R., Yakunin, K., Iskakov, S., Sainova, S., Abdilmanova, A., Kuchin, Y.: Comparative analysis of classification algorithms. In: 2015 9th International Conference on Application of Information and Communication Technologies (AICT), pp. 96–101 (2015). https://doi.org/10.1109/ICAICT.2015.7338525
Joy, T.T., Rana, S., Gupta, S., Venkatesh, S.: Hyperparameter tuning for big data using Bayesian optimisation. In: 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 2574–2579 (2016). https://doi.org/10.1109/ICPR.2016.7900023
Seliya, N., Khoshgoftaar, T.M., Van Hulse, J.: A study on the relationships of classifier performance metrics. In: 2009 21st IEEE International Conference on Tools with Artificial Intelligence, pp. 59–66 (2009). https://doi.org/10.1109/ICTAI.2009.25
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Sgroi, G., Parasiliti Palumbo, G.A., Di Salvatore, V., Russo, G., Pappalardo, F. (2021). PEAK: A Clever Python Tool for Exploratory, Regression, and Classification Data. A Case Study for COVID-19. In: Rojas, I., Castillo-Secilla, D., Herrera, L.J., Pomares, H. (eds) Bioengineering and Biomedical Signal and Image Processing. BIOMESIP 2021. Lecture Notes in Computer Science(), vol 12940. Springer, Cham. https://doi.org/10.1007/978-3-030-88163-4_31
Download citation
DOI: https://doi.org/10.1007/978-3-030-88163-4_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-88162-7
Online ISBN: 978-3-030-88163-4
eBook Packages: Computer ScienceComputer Science (R0)