Skip to main content

PEAK: A Clever Python Tool for Exploratory, Regression, and Classification Data. A Case Study for COVID-19

  • Conference paper
  • First Online:
Bioengineering and Biomedical Signal and Image Processing (BIOMESIP 2021)

Abstract

Researchers often face the need to collect, explore, correlate, analyze, and classify different data sources to discover unknown relationships while performing basic steps of pattern recognition and regression analysis with classification. PEAK is a Python tool designed to make easier all of these the basic steps of pattern recognition, allowing less experienced users to reduce the time required for analysing data and promoting the discovery of unknown relationships between different data. As a working example, we applied PEAK to a specific case study dealing with a well-defined dataset representing a cohort of COVID-19 10000 digital twins with different immunological characteristics.

PEAK is a freely available open-source software. It runs on all platforms that support Python3. The user manual and source code are accessible following this link: https://github.com/Pex2892/PEAK.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Li, Z., Yang, S., Wu, J.: The prediction of the spread of COVID-19 using regression models. In: 2020 International Conference on Public Health and Data Science (ICPHDS), pp. 247–252 (2020). https://doi.org/10.1109/ICPHDS51617.2020.00055

  2. Syeda, H.B., et al.: Role of machine learning techniques to tackle the COVID-19 crisis: systematic review. JMIR Med. Inform. 9 (2021). https://doi.org/10.2196/23811

  3. Lindstrom, G.: Programming with Python. IT Prof. 7, 10–16 (2005). https://doi.org/10.1109/MITP.2005.120

    Article  Google Scholar 

  4. Russo, G., et al.: In silico trial to test COVID-19 candidate vaccines: a case study with UISS platform. BMC Bioinform. 21, 527 (2020). https://doi.org/10.1186/s12859-020-03872-0

    Article  Google Scholar 

  5. Russo, G., et al.: Moving forward through the in silico modeling of tuberculosis: a further step with UISS-TB. BMC Bioinform. 21, 458 (2020). https://doi.org/10.1186/s12859-020-03762-5

    Article  Google Scholar 

  6. Pennisi, M., Russo, G., Sgroi, G., Palumbo, G.A.P., Pappalardo, F.: In silico evaluation of daclizumab and vitamin D effects in multiple sclerosis using agent based models. In: Cazzaniga, P., Besozzi, D., Merelli, I., Manzoni, L. (eds.) CIBB 2019. LNCS, vol. 12313, pp. 285–298. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63061-4_25

    Chapter  Google Scholar 

  7. Pappalardo, F., et al.: A computational model to predict the immune system activation by citrus-derived vaccine adjuvants. Bioinformatics 32, 2672–2680 (2016). https://doi.org/10.1093/bioinformatics/btw293

    Article  Google Scholar 

  8. Pappalardo, F., Flower, D., Russo, G., Pennisi, M., Motta, S.: Computational modelling approaches to vaccinology. Pharmacol. Res. 92, 40–45 (2015). https://doi.org/10.1016/j.phrs.2014.08.006

    Article  Google Scholar 

  9. Pappalardo, F., Motta, S., Lollini, P.-L., Mastriani, E.: Analysis of vaccine’s schedules using models. Cell. Immunol. 244, 137–140 (2006). https://doi.org/10.1016/j.cellimm.2007.03.002

    Article  Google Scholar 

  10. Viceconti, M., Juarez, M.A., Curreli, C., Pennisi, M., Russo, G., Pappalardo, F.: Credibility of in silico trial technologies—a theoretical framing. IEEE J. Biomed. Heal. Inform. 24, 4–13 (2020). https://doi.org/10.1109/JBHI.2019.2949888

    Article  Google Scholar 

  11. Pennisi, M., et al.: Predicting the artificial immunity induced by RUTI® vaccine against tuberculosis using universal immune system simulator (UISS). BMC Bioinform. 20, 504 (2019). https://doi.org/10.1186/s12859-019-3045-5

    Article  Google Scholar 

  12. Pennisi, M., Russo, G., Ravalli, S., Pappalardo, F.: Combining agent based-models and virtual screening techniques to predict the best citrus-derived vaccine adjuvants against human papilloma virus. BMC Bioinform. 18, 544 (2017). https://doi.org/10.1186/s12859-017-1961-9

    Article  Google Scholar 

  13. Pearson’s correlation coefficient. In: Kirch, W. (ed.) Encyclopedia of Public Health, pp. 1090–1091. Springer Netherlands, Dordrecht (2008). https://doi.org/10.1007/978-1-4020-5614-7_2569

  14. Spearman Rank Correlation Coefficient. In: The Concise Encyclopedia of Statistics, pp. 502–505. Springer New York, New York, NY (2008). https://doi.org/10.1007/978-0-387-32833-1_379

  15. Kendall, A.M.G.: Biometrika Trust: A New Measure of Rank Correlation, vol. 30, pp. 81–93. Oxford University Press on behalf of Biometrika Trust Stable. https://www.jstor.org/stable/2332226 (1938).

  16. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence, vol. 2, pp. 1137–1143. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1995)

    Google Scholar 

  17. Muhamedyev, R., Yakunin, K., Iskakov, S., Sainova, S., Abdilmanova, A., Kuchin, Y.: Comparative analysis of classification algorithms. In: 2015 9th International Conference on Application of Information and Communication Technologies (AICT), pp. 96–101 (2015). https://doi.org/10.1109/ICAICT.2015.7338525

  18. Joy, T.T., Rana, S., Gupta, S., Venkatesh, S.: Hyperparameter tuning for big data using Bayesian optimisation. In: 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 2574–2579 (2016). https://doi.org/10.1109/ICPR.2016.7900023

  19. Seliya, N., Khoshgoftaar, T.M., Van Hulse, J.: A study on the relationships of classifier performance metrics. In: 2009 21st IEEE International Conference on Tools with Artificial Intelligence, pp. 59–66 (2009). https://doi.org/10.1109/ICTAI.2009.25

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Pappalardo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sgroi, G., Parasiliti Palumbo, G.A., Di Salvatore, V., Russo, G., Pappalardo, F. (2021). PEAK: A Clever Python Tool for Exploratory, Regression, and Classification Data. A Case Study for COVID-19. In: Rojas, I., Castillo-Secilla, D., Herrera, L.J., Pomares, H. (eds) Bioengineering and Biomedical Signal and Image Processing. BIOMESIP 2021. Lecture Notes in Computer Science(), vol 12940. Springer, Cham. https://doi.org/10.1007/978-3-030-88163-4_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88163-4_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88162-7

  • Online ISBN: 978-3-030-88163-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics