Skip to main content

Risk Group Determination in Case of COVID-19 Infection

  • Conference paper
  • First Online:
Bioengineering and Biomedical Signal and Image Processing (BIOMESIP 2021)

Abstract

The possibility of quick decoding of individual human genome has allowed us to amass vast data arrays of diseases, as well as associated human DNA mutations. It is well-known that DNA mutations cause genetic diseases and disorders. Among the risk group of severe coronavirus disease cases are patients with preexisting cardiovascular or respiratory diseases, oncologic pathologies, hypertension, and other disorders. Coronavirus disease severity can be predicted using machine learning methods trained on features corresponding to single nucleotide polymorphisms in gene coding sequences of patient genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oran, D.P., Topol, E.J.: The proportion of SARS-CoV-2 infections that are asymptomatic: a systematic review. Ann. Intern. Med. 174(5), 5655–5662 (2021)

    Article  Google Scholar 

  2. U.S. Centers for Disease Control and Prevention (CDS). https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-management-patients.html

  3. U.S. Centers for Disease Control and Prevention (CDS). https://www.cdc.gov/coronavirus/2019-ncov/long-term-effects.html

  4. Al-Aly, Z., Xie, Y., Bowe, B.: High-dimensional characterization of post-acute sequelae of COVID-19. Nature 594(7862), 259–264 (2021)

    Article  Google Scholar 

  5. Thomson, E.C., et al.: Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity. Cell 184(5), 1171–1187 (2021)

    Article  Google Scholar 

  6. World Health Organization. https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/

  7. Levin, A.T., Hanage, W.P., Owusu-Boaitey, N., Cochran, K.B., Walsh, S.P., Meyerowitz-Katz, G.: Assessing the age specificity of infection fatality rates for COVID-19: systematic review, meta-analysis, and public policy implications. Eur. J. Epidemiol. 35(12), 1123–1138 (2020). https://doi.org/10.1007/s10654-020-00698-1

    Article  Google Scholar 

  8. Dehingia, N., Raj, A.: Sex differences in COVID-19 case fatality: do we know enough? Lancet Glob. Health 9(1), 14–15 (2021)

    Article  Google Scholar 

  9. WHO Director-General’s Statement on the Advice of the IHR Emergency Committee on Novel Coronavirus. https://www.who.int/director-general/speeches/detail/who-director-general-s-statement-on-the-advice-of-the-ihr-emergency-committee-on-novel-coronavirus

  10. Tayarani, N.M.-H.: Applications of artificial intelligence in battling against covid-19: a literature review. Chaos Solitons Fractals 142, 110338 (2020)

    Article  MathSciNet  Google Scholar 

  11. Alballa, N., Al-Turaiki, I.: Machine learning approaches in COVID-19 diagnosis, mortality, and severity risk prediction: a review. Inform. Med. Unlocked 24, 100564 (2021)

    Article  Google Scholar 

  12. Kar, S., Chawla, R., Haranath, S.P., et al.: Multivariable mortality risk prediction using machine learning for COVID-19 patients at admission (AICOVID). Sci Rep 11, 12801 (2021)

    Article  Google Scholar 

  13. Kukar, M., et al.: COVID-19 diagnosis by routine blood tests using machine learning. Sci. Rep. 11(1), 10738 (2021)

    Article  Google Scholar 

  14. Vagis, A.A., Gupal, A.M., Sergienko, I.V.: Determination of risk groups for the Covid-19 underlying diseases. Cybern. Syst. Anal. 57(2), 223–227 (2021). https://doi.org/10.1007/s10559-021-00347-9

    Article  MATH  Google Scholar 

  15. Gupal, A.M., Pashko, S.V., Sergienko, I.V.: Efficiency of Bayesian classification procedure. Cybern. Syst. Anal. 31(4), 543–554 (1995). https://doi.org/10.1007/BF02366409

    Article  MATH  Google Scholar 

  16. Gridina, N.J., Gupal, A.M., Tarasov, A.L.: Bayesian recognition of inflammatory processes in brain gliomas. Cybern. Syst. Anal. 53(3), 366–372 (2017). https://doi.org/10.1007/s10559-017-9936-4

    Article  MATH  Google Scholar 

  17. Pipeline-oriented Analytics on GitHub. https://github.com/bbiletskyy/pipeline-oriented-analytics

  18. Categorical Bayes Method on GitHub. https://github.com/bbiletskyy/categorical-bayes

  19. SNP Retrieval on GitHub. https://github.com/bbiletskyy/snp-retrieval

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Borys Biletskyy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Biletskyy, B., Gupal, A. (2021). Risk Group Determination in Case of COVID-19 Infection. In: Rojas, I., Castillo-Secilla, D., Herrera, L.J., Pomares, H. (eds) Bioengineering and Biomedical Signal and Image Processing. BIOMESIP 2021. Lecture Notes in Computer Science(), vol 12940. Springer, Cham. https://doi.org/10.1007/978-3-030-88163-4_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88163-4_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88162-7

  • Online ISBN: 978-3-030-88163-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics